
Fostering Students-Driven Learning of Computer
Programming with an Ensemble of E-learning Tools

Ricardo Queirós1 and José Paulo Leal2,

1 Department of Informatics, Polytechnic of Porto & CRACS & INESC-Porto LA,

2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto

ricardoqueiros@esmad.ipp.pt
zp@dcc.fc.up.pt

Abstract. Learning through practice is crucial to acquire a complex skill.
Nevertheless, learning is only effective if students have at their disposal a wide
range of exercises that cover all the course syllabus and if their solutions are
promptly evaluated and given the appropriate feedback. Currently the teaching-
learning process in complex domains, such as computer programming, is
characterized by an extensive curricula and a high enrolment of students. This
poses a great workload for faculty and teaching assistants responsible for the
creation, delivering and assessment of student exercises. In order to address
these issues, we created an e-learning framework - called Ensemble - as a
conceptual tool to organize and facilitate technical interoperability among
systems and services in domains that use complex evaluation. These domains
need a diversity of tools, from the environments where exercises are solved, to
automatic evaluators providing feedback on the attempts of students, not
forgetting the authoring, management and sequencing of exercises. This paper
presents and analyzes the use of Ensemble for managing the teaching-learning
process in an introductory programming course at ESEIG - a school of the
Polytechnic of Porto. An experiment was conducted to validate a set of
hypotheses regarding the expected gains: increase in number of solved
exercises, increase class attendance, improve final grades. They support the
conclusion that the use of this e-learning framework for the practice-based
learning has a positive impact on the acquisition of complex skills, such as
computer programming.

Keywords: E-Learning Interoperability, Distributed and interactive learning
environments, Programming and programming languages, Teaching/learning
strategies.

1 Introduction

For someone to acquire, improve or even maintain a complex skill it is necessary to
practice it on a regular basis [1,2]. The amount of practice required depends on the
nature of the activity and on each individual. How well an individual improves with
practice is directly related with her or his inherent aptitudes, previous know-how and

on the feedback. If feedback is either non-existent or inappropriate, then the practice
tends to be ineffective or even detrimental to learning.

There are several complex skills that require constant practice, where exercise
solving is a key component such as management, health sciences, electronics. Playing
business games in management courses, or simulating a human patient in life sciences
courses, or simulating an electronic circuit in electronics courses are examples of
learning processes that require the use of special authoring, rendering and assessment
tools. These tools should be integrated in instructional environments to provide a
better learning experience. However, these tools would be too specific to incorporate
in an e-learning platform. Even if they could be provided as pluggable components,
the burden of maintaining them would be prohibitive to institutions with few courses
in those domains.

The motivation for this work comes from yet another domain with complex
evaluation: computer programming. Introductory programming courses are generally
regarded as difficult and often have high failure and dropout rates [3,4,5]. Researchers
pointed out several causes for these rates [6]. The most consensual are:

 Teaching methods - lectures and programming language syntaxes [7,8];
 Subject complexity - learning how to program means to integrate

knowledge of a wide variety of conceptual domains such as computer
science and mathematics while developing expertise in problem
understanding, problem-solving, unit testing and others. Additionally,
students petered out when they need to understand and apply abstract
programming concepts like control structures or to create algorithms that
solve concrete problems [6];

 Student motivation - the public image of a "programmer" as a socially
inadequate "nerd" [9] and the reputation of programming courses as being
extremely difficult affects negatively the motivation of the students [10]

Many educators claim that "learning through practice" is by far the best way to
learn computer programming and to engage novice students [1,2]. Practice in this area
boils down to solving programming exercises. Nevertheless, solving exercises is only
effective if students receive an assessment on their work. An exercise solved wrong
will consolidate a false belief, and without feedback many students will not be able to
overcome their difficulties.

2 State of the Art

Assessment plays a vital role in learning [3]. However, automatic assessment of
exercises other than multiple choice can be a rather complex task. This kind of
evaluation differs significantly from evaluations supported by most LMSs, encoded in
the IMS Question \& Test Interoperability (IMS QTI) specification1. The data model
of QTI was designed for questions with a set of pre-defined answers and cannot
handle evaluation domains with specialized requirements such as the computer
programming. For instance, the assessment of programming exercises requires tests

1 IMS QTI Web site: http://www.imsglobal.org/question/

cases, program solutions, compilation lines and other data that cannot be encoded in
QTI. Besides the lack of a formal description for programming exercises, the
interaction of assessment tools with other systems is not mature enough since there
are no communication specifications as stated in several surveys [11,12].
Automatic assessment in computer programming domains can be applied in two
distinct learning contexts: curricular and competitive learning. Introductory
programming courses are part of the curricula of many engineering and sciences
programs. These courses rely on programming exercises, assignments and practical
examinations to consolidate knowledge and evaluate students. The enrolment in these
courses is usually very high, resulting in a great workload for the faculty and teaching
assistants responsible for assessing student programs.
While the concept of "winners and losers" can hinder the motivation of students [13],
competitive learning is a learning paradigm that relies on the competitiveness of
students to increase their programming skills [14,15]. This is the common goal of
several programming contests where students at different levels compete such as: the
International Olympiad in Informatics (IOI)2, for secondary school students; the ACM
International Collegiate Programming Contest (ICPC)3, for university students; and
the IEEExtreme4, for IEEE student members.
In this context, several tools are used to allows students to train or participate in
programming contests. These tools such as Programming Contests Management
Systems (PCMS) and Online Judges (OJ) rely also on the assessment of programming
exercises.
In both scenarios the manual assessment of programming assignments poses
significant demands on the time of teachers [16]. Apart from being time-consuming,
manual assessment hinders the consistency and accuracy of assessment results as well
as it allows unintended biases and a diverse standard of marking schemes [17]. This
demand stimulated the development of automated learning and assessment systems in
many universities [3] as a means for grading the programming exercises of students as
well as giving feedback on the quality of their solutions [18,19]. This feedback
support is crucial for the computer programming learning [20,21], especially for first
year students that need to be adequately engaged to learn programming [9].
Furthermore, immediate feedback motivates students to continue practicing [22,23].
Beyond the automatic assessment other relevant topic in this domain is the
availability of programming exercises. It is important that an e-learning system
provides a collection of exercises covering a course syllabus and with different levels
of difficulty. It has been shown that this can improve the performance of students and
their satisfaction levels [20]. Students with lower computer skills can begin by solving
easier problems to learn progressively and to stay motivated to solve the harder
problems later [24]. At the same time this gives them experience that is one of the
factors that has a greater influence on the student success in learning programming. In
recent years, many programming exercises have been developed and published mostly
for use in programming contests. These exercises are generally stored in proprietary
systems (e.g. Online Judges) for their own use. Despite some efforts [25] to define a

2 IOI Web site: http://ioinformatics.org
3 ICPC Web site: http://icpc.baylor.edu/
4 IEEExtreme Web site: https://tinyurl.com/ycm8pabf

common format to describe programming exercises, each of these systems has its own
exercise format, making it difficult to share among instructors and students. This
poses several issues on the interoperability of the assessment systems with other e-
learning systems.
Many learning tools and environments have been built to assist both teachers and
students in introductory programming courses.
Rongas, Kaarna, and Kalviainen [26] established a classification for these tools
dividing them into four categories: 1) integrated development interfaces, 2)
visualization tools, 3) virtual learning environments, and 4) systems for submitting,
managing, and testing exercises. To the best of the author's knowledge, no e-learning
environment described in the literature integrates all these facets [6,10,27].
Several systems [27,28,29] try to address this issue allowing the integration of
automatic assessment tools with course management systems but these approaches
rely on ad hoc solutions or proprietary plug-ins rather on widely accepted
international specifications for content description and communication among
systems.

3 The Ensemble framework

The cornerstone of this approach is an e-learning framework - called Ensemble - that
acts as a conceptual tool in the definition and deployment of such kind of e-learning
network, relying on interoperability content and communication standards and
specifications. This section provides a brief introduction to the Ensemble framework.
Details on this framework can be found elsewhere [30].
The Ensemble e-learning framework (EeF) is exclusively focused on the teaching-
learning process. Existing frameworks cover areas that go beyond the scope of e-
learning, from course to financial management. In this framework the focus is on the
coordination of pedagogical services that are typical in everyday life of teachers and
students at schools such as the creation, delivery, resolution and evaluation of
assignments. This framework emphasizes the use of assessment services to
automatically evaluate the attempts of students to solve exercises and to produce
relevant feedback on their quality. The need for automatic assessment exists in
different domains, for instance:

1) an electronic circuit evaluator receives a description of a circuit, injects input
signals, simulates the circuit and compares output signals;

2) a diagram evaluator receives a description of a diagram (e.g. UML) - a typed
graph - and tries to create a graph homomorphism with a solution;

3) a programming exercise evaluator receives an attempt of a student to solve
an exercise and the program is executed against test data, and then the output
of the program (or return value) is compared with a solution model.

Another distinctive feature of EeF is its architectural model. The EeF uses a model
that can be described as a "decentralized orchestration". An implementation of the
EeF uses a pivot component that orchestrates the communication with other services
but is replicated and deployed for each end user. This novel approach avoids any
single-point-of-failure issues that occur in central orchestrations.

Based on this framework a network of systems and services was created and deployed
for a specific domain - the computer programming domain. This framework instance
comprises several systems and services and their integration poses interoperability
issues on two levels: content and communication. Content issues are tacked with a
standard format to describe programming exercises as learning objects.
Communication is achieved with the extension of existing specifications for the
interoperation with several systems typically found in an e-learning environment such
as learning management systems, learning objects repositories and assessment
systems. Some of these systems were created from scratch and others were adapted to
support the new content and communication specifications.
The overall architecture of a network of e-learning systems and services participating
in the automatic evaluation of programming exercises is depicted in Figure 1.

Fig. 1. Network component diagram.

The network is composed by the following components: 1) Teaching Assistant (TA)
to interface the users with the network and to mediate the communication among all
components; 2) Integrated Development Environment (IDE) to code the exercises; 3)
Assessment System (AS) to evaluate exercises of students; 4) Learning Objects
Repository (LOR) to store and retrieve exercises; 5) Learning Management System
(LMS) to present the exercises to students; 6) Conversion System (CS) to convert
exercises formats.

4 Experiment

The experiment took place at the Escola Superior de Estudos Industriais e de Gestão
(ESEIG) - a school of the Polytechnic Institute of Porto - during the months of
October and November of 2013. The participants were students from the first-year of
the course Algorithms and Programming and their teachers. This course is offered to
the degree in Mechanical Engineering and aims to introduce students to programming
concepts.
The experiment methodology followed the experimental research method. For this
purpose, experimental and control groups (two classes from the same course) were

settled. The first class (the experimental group) had 21 students and the second class
(the control group) had 19 students.
Students of both groups have similar characteristics such as the gender and previous
background. For instance, the gender in both groups were well distributed,
respectively 62% and 57% of females in both groups.
The conditions of the experiment were also equal for both classes (e.g. syllabus,
teaching times, teacher, labs, technical means).
Although it could be assumed that the population of the classes were almost randomly
formed, strictly the experiment should be called a quasi-experiment. A completely
randomized design was not possible due to operational reasons. Based on this type of
design, a static group comparison design was followed where students of class A
used Ensemble (the experimental group) and students of class B did not use it (the
control group).
The course has an average enrolment of 40 students per year divided in two classes.
The course is organized in two lectures of one hour each and one lab session of 4
hours per week. The experiment occurred in 6 lab sessions. In each lab session both
groups (a total of 40 students) had 3 exercises to solve. In the experimental group the
teacher only intervenes to solve operational issues related to the use of Ensemble and
does not give any feedback to students regarding the exercises. Prior to the
experiment, teacher and students were prepared for the experiment.

The instruments used for collecting data on the experiment were the following:
surveys (session l& final survey), service logs, students' attendance logs and grades.

The surveys were fulfilled and collected on-line using Google Forms5. Two types
of surveys were presented to students: session and final survey. The former was filled
in by both groups of students after each lab session. The questionnaire6 includes
questions on the number of solved exercises and the feedback impact. It had an
average of 38 responses per session (the equivalent to 95\% of the total of students).
The latter was presented to the experimental group at the end of the experiment. The
questionnaire includes questions on the Petcha (the central component of the system
acting as a Teaching Assistant tool) usefulness and reliability. The final survey was
completed by all the students from the experimental group.

After each lab session both classes were surveyed on the number of solved
exercises and the feedback impact. Table 1 aggregates the answers given by students.

Table 1. Survey results averages.

Assertions Experimental Group Control Group
Exercises started 89% 81%
Exercises complete 83% 74%
Exercises effectively solved 82% 66%
Exercises with feedback 59% 62%
Feedback helpfulness 55% 62%

5 http://www.google.com/google-d-s/forms/
6 http://goo.gl/AlhsL

Data collected in the experimental class surveys was checked against the logs of
Petcha and other systems in the network to attest the truthfulness of the survey
responses. An average discrepancy of 4.6% between these two sets of values was
found. This value suggests that students filled the survey carefully.

Firstly, statistical tests called Shapiro–Wilk were made to test if the samples came
from a normally distributed population. After this validation, statistical hypothesis
tests were used to assess whether the means of these two groups are statistically
different from each other. The t-test is commonly used to verify if differences in
observations can be explained by chance with a certain significance level p, typically
0.05 or 0.01.

For instance, using the .05 significance level means that one will accept as a real
difference only those that occurred by chance only 5 times in 100 (i.e. in 95% of cases
not due to chance). The statistical tests on the two sets of data (survey data and logs
data) were satisfactory since the probability of the differences being the result of
chance is higher than 5% (p=0.312 p > 0.05$). Hence, we cannot distinguish
between the two averages since their difference most likely occurred by chance.

The service logs were used to attest the accuracy of the experimental group
questionnaires responses. The data collected in the surveys of the experimental class
was checked against the logs of Petcha and other systems in the network. An average
discrepancy of 4.6\% between these two sets of values was found.

 The student attendance and student outcomes (programming module and
semester grades) were collected through the Academic Management System used at
ESEIG. The data was exported to a spreadsheet to simplify the data processing.

Due to page limit constraints, others statistic were omitted, such as: exercises

solving, feedback, attendance and grades.

5 Conclusions and Future Work

This paper presents and analyzes the results of an experiment on the use of an e-
learning framework called Ensemble that acts as a conceptual tool in the definition
and deployment of e-leaning networks using complex evaluation. The experiment
occurred in ESEIG - a school of the Polytechnic of Porto. The framework instance
was deployed for use in practical classes of undergraduate programming courses.

The participants were students from the first-year of the course Algorithms and
Programming and their teachers. This course is offered to the degree in Mechanical
Engineering and aims to introduce students to programming concepts.

 The results of the experiment showed an increase on exercises solving, attendance
and grades when Petcha (we only show statistics on the first due to page limit
restrictions) replaced a human Teaching Assistant (TA). However, these results show
also that the automatic feedback provided by Petcha is less effective than that of a
human TA. There is clearly room for improving automatic feedback in Petcha,

although it can be argued that automated feedback is still a remedy for situations
where a human TA is not available.

We can conclude that this Ensemble instance is a stable and reliable environment.
Although there are still several aspects to improve the process of teaching and
learning in domains with complex evaluation, such as computer programming.

Thus, the main conclusion is that the Ensemble instance improves student
outcomes and this effect persists in the subsequent years after the introduction of the
evaluation method.

The computer programming instance of Ensemble is currently being used in the
practical classes of undergraduate programming courses at ESEIG and will continue
to be used in the next academic year. Nevertheless, the evaluation of Ensemble and
the validation of this work highlighted a number of issues that must be resolved.
Several improvements are planned for immediate implementation based on the
experiment results and based on the suggestions of teachers and students after the
experiment. They are the improvement of the feedback, the extension of Ensemble for
new domains and the upgrade of the pivot component.

The quality of feedback is one of the major issues detected in the evaluation phase
of Ensemble. One solution is to improve the feedback mechanism based on, for
instance, the use of static analysis over the students' code. Existing work in this area
[31] can be used to improve the feedback given to students after submission.

Other facet to be improved is related with the Ensemble support for multi-domains.
Ensemble as an e-learning framework can be specialized to other domains. Still, we
only instantiate for a single domain - the computer programming domain. However, it
was always kept in mind that the proposed concepts and tools could be used in other
domains. The main opportunity for future research comes from extending this
framework to other domains and requirements. One interesting domain is serious
games applied to management courses where students develop their skills using
simulation. Business simulation games improve the strategic thinking and decision-
making skills of students in several areas (e.g. finances, logistics, and production).
Through these simulations students compete among them as they would in a real-
world company. A business simulation service fulfils a role like that of the assessment
systems in programming exercises and it also requires a repository containing
specialized LO describing simulations. Thus, this specific domain poses challenges
not only in the development of the network TA, but also in the refinement of the
framework specifications and services (e.g. repository, assessment system) to meet
the new evaluation domains requirements.

The central piece of Ensemble instance network and the visible system of the
network is a pivot component called Petcha. Based on the suggestions of teachers and
students after the experiment, we plan to make some improvements. First, we will
make the user interface more intuitive and flexible. We will also improve the
visualization of the evaluation reports using new formats (e.g. PDF) and improve
statistical data on student activity (e.g. time to solve, rankings). Finally, we will
extend the documentation to guide users.

Acknowledgments

This work is partially funded by the ERDF through the COMPETE 2020
Programme within project POCI-01-0145-FEDER-006961, and by National Funds
through the FCT as part of project UID/EEA/50014/2013.

References

1. Gross, P. and Powers, K. (2005). Evaluating assessments of novice programming
environments. In Proceedings of the first international workshop on Computing
education research, ICER '05, pages 99-110, New York, NY, USA. ACM.

2. Eckerdal, A. (2009). Novice Programming Students' Learning of Concepts and
Practise. PhD thesis, Uppsala, Uppsala University, Division of Scientific Computing,
Numerical Analysis

3. Ala-Mutka, K. (2005). A survey of automated assessment approaches for
programming assignments. Journal of Computer Science Education, 15(2):83-102.
http://www.tandfonline.com/doi/pdf/10.1080/08993400500150747.

4. O'Kelly, J. and Gibson, J. P. (2006). Robocode & problem-based learning: a non-
prescriptive approach to teaching programming. SIGCSE Bull., 38(3):217-221.

5. Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education, 13:137-172.

6. Esteves, M., Fonseca, B., Morgado, L., and Martins, P. (2010). Improving teaching
and learning of computer programming through the use of the Second Life virtual
world. British Journal of Educational Technology.

7. Lahtinen, E., Ala- Mutka, K., and J arvinen, H.-M. (2005). A study of the difficulties
of novice programmers. SIGCSE Bull., 37(3):14-18.

8. Schulte, C. and Bennedsen, J. (2006). What do teachers teach in introductory
programming? In Proceedings of the second international workshop on Computing
education research, ICER '06, pages 17-28, New York, NY, USA. ACM.

9. Jenkins, T. (2002). On the Difficulty of Learning to Program. In 3rd annual
Conference of LTSN-ICS, Loughbourgh.

10. Gomes, A. and Mendes, A. J. (2007). Learning to program - difficulties and solutions.
Proceedings of the International Conference on Engineering Education.

11. Leal, J. P. and Queirós, R. (2010). elearning frameworks: a survey. In International
Technology, Education and Development Conference, Valencia, Spain.

12. Queirós, R. and Leal, J. P. (2011). A survey on elearning content standardization. In
"World Summit on the Knowledge Society", WSKS'11. Springer Verlag.

13. Vansteenkiste, M. and Deci, E. L. (2003). Competitively contingent rewards and
intrinsic motivation: Can losers remain motivated? Motivation and Emotion, 27:273-
299. 10.1023/A:1026259005264

14. Burguillo, J. C. (2010). Using game theory and competition-based learning to
stimulate student motivation and performance. Comput. Educ., 55(2):566-575.

15. Siddiqui, A., Khan, M., and Akhtar, S. (2008). Supply chain simulator: A scenario-
based educational tool to enhance student learning. Comput. Educ., 51(1):252-261

16. Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based assessment
of programming: A review. J. Educ. Resour. Comput., 5.

17. Romli, R., Sulaiman, S., and Zamli, K. (2010). Automatic programming assessment
and test data generation a review on its approaches. In Information Technology
(ITSim), 2010 International Symposium in, volume 3, pages 1186-1192.

18. Tremblay, G., Guérin, F., Pons, A., and Salah, A. (2008). Oto, a generic and
extensible tool for marking programming assignments. Softw. Pract. Exper.,
38(3):307-333.

19. Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., and Padua-
Perez, N. (2006). Experiences with marmoset: designing and using an advanced
submission and testing system for programming courses. SIGCSE Bull., 38(3):13-17.

20. Wang, F. L. and Wong, T.-L. (2008). Designing programming exercises with
computer assisted instruction. In Proceedings of the 1st international conference on
Hybrid Learning and Education, ICHL '08, pages 283-293, Berlin, Heidelberg.
Springer-Verlag.

21. Mory, E. H. (2007). Feedback research revisited. Handbook of Research for
Educational Communications and Technology.

22. Daly, C. (1999). Roboprof and an introductory computer programming course.
SIGCSE Bull., 31(3):155-158.

23. Truong, N. K. D. (2007). A web-based programming environment for novice
programmers. PhD thesis, Queensland University of Technology

24. Lee, F. and Heyworth, R. (2000). Problem complexity: A measure of problem
difficulty in algebra by using computer.

25. Queirós, R. and Leal, J. P. (2012b). Petcha - a programming exercises teaching
assistant. In ACM SIGCSE 17th Anual Conference on Innovation and Technology in
Computer Science Education, Haifa, Israel. ACM.

26. Rongas, T., Kaarna, A., and Kalviainen, H. (2004). Classification of computerized
learning tools for introductory programming courses: Learning approach. In Kinshuk,
Looi, C.-K., Sutinen, E., Sampson, D. G., Aedo, I., Uden, L., and Kaahkaonen, E.,
editors, ICALT. IEEE Computer Society.

27. Verdú, E., Regueras, L. M., Verdú, M. J., Leal, J. P., de Castro, J. P., and Queirós, R.
(2011). A distributed system for learning programming on-line. Computers &
Education.

28. Xavier, J. and Coelho, A. (2011). Computer-based assessment system for e-learning
applied to programming education. In ICERI2011 Proceedings, 4th International
Conference of Education, Research and Innovations, pages 3738-3747. IATED.

29. Guerreiro, P. and Georgouli, K. (2008). Enhancing elementary programming courses
using e-learning with a competitive attitude. International Journal of Internet
Education, 10.

30. Queirós, R. and Leal, J. P. (2012). Orchestration of e-learning services for automatic
evaluation of programming exercises. 18(11):1454-1482.
http://www.jucs.org/jucs1811=orchestrationofelearningservices:

31. Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA

