An extensible architecture for web adaptability

José Paulo Leal and Pedro Silva

DCC-FC & LIACC, University of Porto
R. Campo Alegre, 1021/1055 — 4169-007 Porto, Portugal
zp@dcc.fc.up.pt psilva@alunos.dcc.fc.up.pt

Abstract. This paper presents an architecture for web adaptability
based on service oriented principles. The major feature of this archi-
tecture is the loose coupling of its components, including the adapted
web site and the adaptation components, that enables its use by existing
web sites and provides a convenient test bed for new adaptation strate-
gies. Another important feature is that adaptation is based on interaction
data collected directly on the web browser rather than on web server’s
logs as in most frameworks.

Keywords: adaptability framework, SOA, service orientation

1 Introduction

Our research goal is the creation of an infrastructure for web adaptability that
integrates with the development tools used by most sites. Moreover, this infras-
tructure is intended to be extensible, in the sense that it should not have a fixed
set of adaptation strategies. In this paper we present an architecture for such an
infrastructure based on service oriented principles.

In his seminal paper on web adaptability [7], Perkowitz distinguishes two
forms of web site adaptation: the optimization of a site for the benefit of a group
of users; and the customization of the site to adjust to preferences and needs of a
specific user. Perkowitz defined optimization as an off-line process that improves
the site as a whole for everyone, while customization is on-line process that
improves a single page for a specific user. Using this classification our approach
to adaptation should be classified as a customization.

Some frameworks for web customization, as most of those reviewed by Eiri-
naki and Varzirgiannis [6], integrate several aspects of web site management,
including those necessary for managing a traditional, non-adaptable web site.
That approach has two important drawbacks: it forces the web site to be devel-
oped within the adaptation framework and relies on a fixed set of adaptation
features.

Content management, and sometimes web site publishing, are some the tasks
that must be implemented within these frameworks to benefit from their adap-
tation service. These tasks are not specific to web adaptation and are more
effectively implemented by specialized systems. In fact, most existing web site



already use their own set of tools and would have to be re-implemented in order
to be adapted by these frameworks.

Moreover, most adaptation frameworks are designed towards a fixed set of
adaptation features. Since the integration of new types of customizations is dif-
ficult, these systems are not good test beds for new adaptation strategies and
thus are not the ideal adaptation framework, at least from a research point of
view. As production systems, this lack of flexibility is also a disadvantage since
the adapted web sites cannot incorporate customizations developed by a third
party.

These observations lead us to define the following set of requirements of an
architecture for web customization:

— support existing web sites, independently of their platform;
require no changes (or minimal changes) in the adapted web sites;
— delegate high level adaptation features in pluggable components;
provide only the basic services required for customization;

— avoid reimplementing features available in other systems.

To support customization in existing websites, developed in different plat-
forms, the several components that assemble the adaptation framework must
have a loose coupling and rely on communication to achieve adaptation.

As well as web sites, the components responsible for adaptation should be
pluggable parts in such an architecture. These components, that we call adapters,
should be independent from web sites and web formatting. They should receive
adaptation requests, have access to the web site content, to end users’ usage
data or other relevant content, and produce a customization response.

With this view of an architecture, where adaptable website and adapters are
pluggable components, we identified three basic services that should be provided
by the underlying framework:

1. connect web sites pages with adapters;
2. apply the customization to web sites pages;
3. collect usage data to feed adapters.

The rest of this paper describes as architecture meeting these requirements
and is organized as follows. The next section introduces the main concepts of
the proposed architecture. Section 3 describes the messages exchanged between
components and the following sections analyzed each component type: client,
broker and adapters. Finally, we present some open issues and future work.

2 An Architecture for adaptability

In this section we introduce the main concepts of an architecture for web adapt-
ability focused on extensibility. This architecture proposes a framework with
two types of extensions points: adaptation consumers and adaptation providers.
Adaptation consumers are any kind of web sites, including static HTML files,



dynamic content generated by web applications or content management sys-
tems. Adaptation providers, or simply adapters are pluggable components that
implement a particular strategy for web adaptability.

Web Client
Content requests Evnt Adaption requests
and responses ns | and responses

Adaption requests
and responses

Content requests Broker

and responses

Register adaptiong
and events Y

Web Content Logger Adapter

Fig. 1. An architecture for web adaptability

Every type of web site, ranging from a simple collection of static HTML
pages to a n-layered web application, relies on a web client (browser). For that
reason, the web client is the ideal place to apply customization, directly over
web content formatting. The browser is also the ideal place for collecting usage
data based directly on user’s interaction, rather than on web servers logs.

This framework places itself between the web client and web server as shown
in Figure 1. A central broker mediates the communication between web clients,
web server and the adapters. Page requests are simply forwarded to the HTTP
server while adaptation requests are forwarded to adapters. When the user fol-
lows a link this results in a page request. The adapted page is loaded to the
browser and a component is automatically activated that performs the adapta-
tion of the client side. The client side adaptation is based on adaptation requests
that are channeled throw the broker to one or more adapters connected to the
infrastructure. The client component is also responsible for collecting user inter-
action data and reporting it to the broker. All communication with the client —
adaption and notification messages — is recorded in a logger component and made
available to adapters. Using data from the logger (and possibly from content)
the adapters can improve their response to adaptation requests.

This architecture is inspired in Service Oriented Architectures (SOA) and
follows some of its main guidelines [4]:

1. component interaction is based on implementation independent messages;
2. there is an prearranged agreement on communication content;



3. components are autonomous, i.e each component is a fully working piece of
software;

4. components hide implementation details and the framework focus on com-
municated data.

Communication between heterogeneous components is the corner stone of
this architecture. Thus, in the next session we start by introducing the mes-
sages exchanged between components before detailing the role of the different
component types.

3 Messages

To communicate components exchange messages in an XML [2] dialect that acts
as an adaptation language. This language was designed to encode all data com-
munication in this framework, with emphasis on page adaptation, but including
also messages for notification of user activity and broker administration.

Adaptation messages are used for requesting the customization of a web page
and returning the changes computed by an adapter. These messages identify the
parts of the web page to be customized, the adapter type needed to perform
the customization, and what is the customization — how the page can be rear-
ranged, what new content can be inserted — while avoiding the communication
of formatted content (e.g. XHTML).

The language supports two kinds of actions as customization: recommend,
when new content is inserted; reformat, when content is preserved but format-
ting is changed. For instance, if the user searches a product and other related
products are displayed then it is a recommendation. If the list of products is
altered, highlighting or promoting some of them, or even hiding other, then it is
reformatting.

A web page requiring adaptation may have several customization points.
Each customization point is given an unique XML identifier and is associated
with a collection of items. In recommendations, responses return a list of items
to be inserted in the customization point. If the customization action is reformat
then a list of items is sent in the adaptation requests. In both cases the adaptation
response associates to each item a set of attributes that influences formatting of
the client side.

In these messages a type of adapter is encode as an Uniform Resource Name
(URN) [8], which is a kind of Uniform Resource Identifier, just as the popular
URL used for referring web pages, that does not require the availability of the
resource that is identified.

After adaptation, notification is the most important message type. These
messages are issued by client components to report user activity, they are pro-
cessed by the broker and stored in logger. This information will later be used
by adapters. A notification message may report on several events to reduce the
communication with the broker.

In the current version of the language, notification messages cannot categorize
event types. All events types supported by the implementation language of the



client component (such as JavaScript) can be sent in notification messages. To
further reduce the number of notification messages we may consider in the future
to process events on the client side. Notification messages would report high level
events, more adjusted to the needs of adapters. A radical approach would be to
report only on user activity, indicating the number of consecutive seconds in
which the user interacted with the page and the number of seconds the web
interface was idle. In any event, this is still a topic of future research.

The messages’ language includes also administration messages. This type of
message is used for tasks such as registering adapters in the framework, to enable
or disable registered adapters, to list adapters or query their status.

4 Broker and Logger

The broker has a central role in this architecture. It is responsible for register-
ing other components, managing communications and logging data to support
adaptation. Although close to the broker, the logger must be an autonomous
component since it can be queried by adapters without interfering in the brokers
performance and should be deployable in a separate server, if necessary.

Efficiency is a very important aspect of the broker since it processes all re-
quests coming from clients. It should be noted that, for each web page request,
several requests will hit the broker: one web page request, introducing modi-
fications on-the-fly to connect it to adapters, one adaptation request for each
adapter involved (each page can use more than one), and several notification
requests, depending on the user interaction on that page.

On the initial request of a web page the broker will fetch it from the web
content server and apply a transformation on the HTML code. This transfor-
mation replaces each customization point with a call to a specific adapter, as
defined in the broker’s configuration for that web site. This configuration file
relates an URL pattern, a customization point and an adapter. For efficiency
sake, the transformed web pages can be cached by the broker.

To process adaption requests the broker must parse the messages described
in the previous subsection. Adaptation requests are simply forwarded to a regis-
tered adapter with a compatible type. The response produced by the adapter is
sent back to client. In the end of this process, the adaptation is recorded in the
logger. Notification messages report on events that occurred in web interface.
The broker unmarshals these messages and records their data in the logger. Ad-
ministration messages are an application programming interface (API) exposing
the commands of the broker. Using this API adapters may interact with the bro-
ker. This API may also be used to implement custom administration interfaces
for managing the framework.

Using the administration commands adapters can register themselves in the
broker, so that they can latter be invoked when a request is made for their type
of adaptation. On registration adapters specify their IP addresses and their type.
Several adapters with the same type may be registered in the same broker. In
this case the broker will balance load among the adapters with the same type



5 Client component

In this architecture customization is performed preferentially on the web browser.
The client component has a very important role in the process since it is re-
sponsible for requesting adaptation to the broker, modifying the web content
and reporting user activity for logging, and subsequent processing by adapters.
Other adaptation frameworks collect also usage data of the client [9] but as far
as we know no other performs adaptation on the client.

As a design goal, we tried to keep this architecture as independent from
specific technologies as possible. Nevertheless, the implementation language of
client component must be able to communicate with the broker, independently
from the HTTP request-response cycle, and modify the interface according to
adaptation responses.

Several web technologies meet these requirements. For instance, Java applets
or Flash movies, have the necessary features to implement the client component,
although the vast majority of web pages uses only standard W3C technologies -
such as HTML, CSS and ECMScript - for presentation and formatting. A client
component for this kind of web interface can be implemented using a technique
commonly called Ajax — standing for Asynchronous JavaScript and XML — that
mixes communication of XML data outside the normal request-response cycle of
HTTP, with the manipulation of the page structure and content using the DOM
API. Although this was the chosen approach to implement the framework, it
should be noted that this choice is independent from the architecture.

6 Adapters

Adapters are pluggable components that process adaptation requests and pro-
vide a response that is delivered to the client component. This architecture
specifies only the role of adapters, not their design. An implementation of this
architecture must specify the interfaces provided by adapters but should not
place other constraints on programming languages, development platforms or
other implementation tools. Adapters may run on different hosts and be im-
plemented if several different platforms. Some adapters may be small programs
experimenting a new algorithm while other may be full fledged components op-
timized for performance.

An implementation of this architecture should provide only a small library of
simple adapters, including the null adapter and echo adapter. The null adapter
is useful for registering events from a web page without actually performing any
adaptation. The echo adapter will simply echo the message it receives. Both
these adapters can used for debugging purposes and should be implemented as
independent components. Although the broker could easily implement internally
their functionality, implementing them as external components reduces the com-
plexity of the broker and makes them more effective as debugging tools.

Adapters process adaptation requests based on user interaction data provided
by the logger. They can also make use of web site content, or other external data
(for instance, news feeds) but that is outside of the scope of this architecture.



As a rule, adapters do not deal with web formatting languages, such as
HTML, neither in requests, nor in responses. Requests for adaptation refer to
customization points on web pages but do not include the actual page; and re-
sponses from adapters are sets of modifications to a page, not the modified con-
tent. This separation between content and adaptation ensures that an adapter
can be re-used in different web sites.

7 Concluding remarks

This paper describes an architecture for a web adaptation framework, designed to
connect adaptation consumers — web sites — with adaptation providers — adapters
— while feeding them with detailed usage data in which to base customization.
Unlike other systems for web adaptability, this framework avoids implementing
specific adaptation features that are delegated to adapters. This non-intrusive
approach makes this framework applicable to existing web sites and does not
prevent the integration of third party adaptations.

The major contributions of this work are an architecture based on service ori-
ented concepts and particularly an adaptation language for exchanging messages
between the several types of components.

A prototype of framework following this architecture was implemented and
applied to an existing web site for testing these concepts. Since then the frame-
work entered in production has been used as a test bed for complex adapters
linked to a data warehouse [3] and is scheduled to test adaptation experiments
in commercial sites.

There are some open issues in this work that we expect to address in the
near future, including the following.

— In the current implementation of the framework the broker is just processing
messages issued from the client component, and is not processing request for
web content; the reverse proxy module of the Apache HTTP server is being
used for that purpose. In the current implementation the transformation of
web pages must be done “by hand” on the web content. We are currently
working on the broker’s transformation module.

— The interaction data collected in the web client could be processed locally
before being logged, saving that effort to the adapters and reducing the
communication with the broker. We hope to be able to define high level
events, adjusted to the needs of web adaptation, and define these events
types in notification messages.

— The current implementation of the framework has a single implementation
of the client library in JavaScript, targeted for traditional HTML with CSS
sites. It would be interesting to test this approach with other technologies.

8 Acknowledgments

Work partially funded by Fundagdo para a Ciéncia e Tecnologia (FCT) and Pro-
grama POSC, under project Site-O-Matic (contract POSC/EIA/58367/2004)



and by LIACC through Programa de Financiamento Plurianual, FCT and Pro-
grama POCTI, co-financed by EC fund FEDER.

References

1. Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces in
xml 1.0 (second edition). Technical report, World Wide Web Consortium, August
2006.

2. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Frangois Yergeau.
Extensible markup language (xml) 1.0 (fourth edition). Technical report, World
Wide Web Consortium, 2006. Available as http://www.w3.org/TR/xml.

3. Marcos A. Domingues, Alipio M. Jorge, Carlos Soares, José Paulo Leal, and Pedro
Machado. A data warehouse for web intelligence. In Proceedings of the Portuguese
Conference on Artificial Inteligence, 2007. Accepted for publication.

4. Thomas Earl. Service-Oriented Architecture - Concepts, Technology and Design.
Prentice Hall, 2005.

5. David C. Fallside and Priscilla Walmsley. Xml schema part 0: Primer second edition.
Technical report, World Wide Web Consortium, 2004. Available as http://www.
w3.org/TR/xmlschema-0/.

6. M. Vazirgiannis M. Eirinaki. Web mining for web personalization. ACM Transac-
tions on Internet Technology, 3(1):1-27, February 2003.

7. Mike Perkowitz and Oren Etzioni. Adaptive web site: an ai challenge. In Proceedings
of the IEEE, 2004.

8. K. Sollins and L. Masinter. Rfc 1737: Functional requirements for uniform resource
names. Technical report, The Internet Engineering Task Force, December 1994.
available as http://tools.ietf.org/html/rfc1737.

9. Michal Tvarozek, Michal Barla, and Méria Bielokova. Personalized presentation in
web-based information systems. In SOFSEM 2007, number 4362 in LNCS, pages
796-807. Springer, January 2007.



