
Visual Programming of XSLT from examples

José Paulo Leal1 and Ricardo Queirós2

1
 DCC/FCUP & CRACS,

zp@dcc.fc.up.pt

2
 DI/ESEIG & CRACS,

ricardo.queiros@eu.ipp.pt

Abstract. Vishnu is a tool for XSLT visual programming in Eclipse - a popular
and extensible integrated development environment. Rather than writing the
XSLT transformations, the programmer loads or edits two document instances,
a source document and its corresponding target document, and pairs texts
between then by drawing lines over the documents. This form of XSLT
programming is intended for simple transformations between related document
types, such as HTML formatting or conversion among similar formats.
Complex XSLT programs involving, for instance, recursive templates or second
order transformations are out of the scope of Vishnu. We present the
architecture of Vishnu composed by a graphical editor and a programming
engine. The editor is an Eclipse plug-in where the programmer loads and edits
document examples and pairs their content using graphical primitives. The
programming engine receives the data collected by the editor and produces an
XSLT program. The design of the engine and the process of creation of an
XSLT program from examples are also detailed. It starts with the generation of
an initial transformation that maps source document to the target document.
This transformation is fed to a rewrite process where each step produces a
refined version of the transformation. Finally, the transformation is simplified
before being presented to the programmer for further editing.

Keywords: XML, XSL Transformations, Second order.

1 Introduction

Computer programs are texts written in a programming language. They are an
interrelated set of instructions that a computer must execute autonomously. The
relationships among instructions are expressed textually using identifiers. Visual
programming languages provide an alternative to the use of textual identifiers by
using graphical elements to represent structure and connect related parts. The goal of
visual programming is to support non-textual interaction to help novice programmers
and/or to increase productivity.

The majority of the "visual" programming environments focus only for the
creation of graphical interfaces, using text editors for programming the logic of

programs. In fact, truly visual programming environments were not successfully
implemented for the general-purpose languages such as Java or C + +. They are
mostly used for introductory programming languages used by children or non-
programmers. They are sometimes used for domain specific languages and languages
for graphical interface programming, as is arguably the case of XSLT.

The aim of this paper is the design of a visual programming tool for XSLT. This
language was designed for XML style sheet definition, but has won a leading role as a
tool for conversion among document types in this formalism. The visual
programming tool is based on examples. The programmer provides instances of the
source document and the corresponding target document and pairs corresponding
texts in both documents using graphical primitives. This data is supplied to a
generator that creates an initial XSLT program. Second order XSLT transformations
refine it to produce a more structured and generic XSLT program.

This visual approach of XSLT programming has obvious limitations. Only a
subset of all possible XSLT transformations is programmable by pairing texts on a
source and target documents. For instance, second order transformations or recursive
templates are out of its scope. Use cases for Vishnu are formatting XML documents
in XHTML and conversion among similar formats. For instance, creating an XHTML
view of an RSS feed and converting metadata among several XML formats are among
the possible uses of Vishnu. Moreover, we do not expect that the automated features
of Vishnu to produce the final version of an XSLT program. We view its final result
as a skeleton of a transformation that can be further refined using other tools already
available in Eclipse.

The remainder of this paper is organized as follows: section 2 explores some of
the related work in this area. In the following section we present the design of a visual
programming environment for XSLT, more precisely, its architecture and its internal
components used to produce and refine an XSLT program. Finally, we conclude with
a summary of the major contributions of this paper and a prospect of future work.

2 Related work

There are several environments for programming in XSLT. Usually these tools are
integrated in XML IDE's or in general purpose IDE's such as Eclipse. In the former
we can highlight StyleVision and Stylus Studio. StyleVision [1] is a commercial
visual stylesheet designer for transforming XML. It allows drag and dropping XML
data elements within an WYSIWYG interface. An XSLT stylesheet is automatically
generated and can be previewed using the FOP built-in browser. Stylus Studio's [2] is
another commercial XML IDE that includes a WYSIWYG XSLT designer. The
edition process is guided by simple drag-and-drop operations without requiring prior
knowledge of XSLT.

There are also several plug-ins for Eclipse for editing XSLT and the Tiger XSLT
Mapper [3] is the most prominent. It is a simple development environment that
supports automatic mappings between XML structures and can be edited using the
drag-and-drop visual interface. While the mappings and XML structures are modified,

the XSLT template is automatically generated and modified. Other examples of
Eclipse plug-ins address the XSLT edition [4,5,6] and the XSLT execution [7,8].

There are other tools analogue to Vishnu that are not integrated into Eclipse, as the
dexter-xsl [9] which is intended to be used from the command line, the VXT [10] a
visual programming language for the specification of XML transformations in an
interactive environment and FOA [11] an XSL-FO graphical authoring tool to create
XSL-FO stylesheets. It includes a tree visualization scheme to represent the source
XML document and the target FO tree structure. FOA generates an XSLT stylesheet
that transforms XML content into an XSL-FO document.

Despite the existence of several environments for programming in XSLT, usually
integrated into IDE's, they do not use visual editing for programming. Moreover, as
far as we know, none of the graphical XSLT programming environment generates
programs from examples.

3 The Vishnu application

In this section we present the design of a visual XSLT programming tool called
Vishnu. The Vishnu application aims to generate XSLT transformations from pairs of
related documents, corresponding to source and target documents of an XSLT
transformation.

3.1 Architecture

The architecture of the Vishnu application is divided in two parts - the Editor and the
Engine - as depicted in Figure 1. It includes the following components:

• the Editor is an Eclipse plug-in that loads a pair of XML documents,
respectively, a source and a target document of an XSLT transformation. The
Editor uses the Vishnu API to interact with the Vishnu Engine (e.g. set of
the imported documents, set a new map, generate the XSLT program);

• the Mapper maintains an XML map file identifying the correspondences
between the two documents. These identifications can be inferred
automatically by the Mapper or manually set through the Editor;

• the Generator uses a second order transformation to generate a specific
XSLT program, based on the correspondences set by the Mapper;

• the Refiner receives the previous XSLT file and uses it as input for a serie of
transformations. These transformations aim to refine the previously achieved
XSLT program. The final result would be a generic XSLT file representing a
more structured and generic transformation between any document instances
of the respective types;

• the Cleaner receives the final transformation produced by the Refiner and
replaces XSLT instructions by corresponding constructions in the target
language. For instance, attributes constructed with the xsl:attribute
element and the xsl:value-of are replaced by an attribute-value pair with
the XPath expressions surrounded by brackets.

Fig. 1. Vishnu architecture.

In the following subsections we detail the internal components of Vishnu.

3.2 Editing

The front-end of Vishnu is an Eclipse plug-in. In this plug-in the "programmer" edits
a pair of XML documents as examples of source and a target documents for the
intended XSLT transformation. These XML instances may be created:

• from scratch, using the two XML Editors included in the GUI;
• guided by their type definitions, using the Eclipse completion mechanism.

 In the last approach the built-in XML instance generator receives a schema file and
automatically generates a valid instance. The user can also define several
configuration options such as create optional elements/attributes, create a first choice
of a required choice or even fill elements and attributes with data.
 Regardless of the choice, the user can identify the correspondences between the
two documents by clicking in the source and target text, respectively. The Editor
component draws a line connecting both texts. A scenario of the graphical user
interface (GUI) of the plug-in for Eclipse is shown in Figure 2.

Fig. 2. The Vishnu Eclipse plug-in.

The GUI will include two side-by-side windows for editing respectively the
source and target transformations. The widgets of these windows support XML
editing for highlighting the XML tags and enable completion based on DTD or XML
Schema, if declared for the document.
 The programmer is able to pair contents on these windows by drawing links where
the origin is on the source document and the destination is on the target window.
Origin and destination must be character data, either text nodes or attribute values. As
can be seen in the example, this correspondence in not a mapping since the same text
on the source document may be used in several points of the target document.

3.3 Pairing

Correspondences can be set manually through the Editor GUI or inferred by the
Engine. When in automatic pairing mode Vishnu tries to identify pairs based on:

• Text matches (text or attribute nodes);
• Text aggregation.

In the first mode strings occurring on text and attribute type nodes on the source
document are searched on the text and attribute nodes of the target document, and
only exact matches are considered. In this mode a single occurrence of a string in the
source document may be paired with several occurrences in the target document, as
depicted in Figure 3.

Fig. 3. Automatic mapping - exact match between single texts.

In the second mode Vishnu tries to aggregate strings in the source document to

create a string in the target document. In Figure 4 we illustrate with a simple case
where 3 strings occurring in attributes and text nodes can be concatenated into a part
of the text node on the target document. In this mode several strings on the source
document can be paired with strings on the target document.

Fig. 4. Automatic mapping - subset of aggregation of texts.

After automatic pairing, the inferred correspondences are presented in the GUI

with lines connecting the two XML documents. The user can then manually
reconstruct the pairing of string between both documents, as explained in the previous
sub-section.

The result of pairing the examples is a document including the actual documents
and a list of pairs of XPath expressions relating them. This document is formally
defined by an XML schema depicted diagrammatically in Figure 5.

Fig. 5. The pairing XML language.

The pairing XML language has an element called vishnu as the root element

with three top elements:
• source - a copy of the source document;
• target - a copy of the target document;
• pairings - list of pairing relating the two documents.

Each correspondence is defined by a pairing element with two attributes for
selecting textual occurrences in both documents: source and target. The source
attribute includes a valid XPath expression selecting the text to pair in the source
document. The target attribute includes a valid XPath expression selecting the text of
the target document. Based on the example of Figure 3, we present the correspondent
XML pairing language:

<vishnu xmlns="http://www.dcc.fc.up.pt/vishnu">
 <source>
 <rss version="2.0" xmlns="http://backend.userlan d.com/rss2"/>
 <channel>
 <title>Notícias</title>
 <link>…</link>
 <description>…</description>
 <item>

 …
 </item>
 </channel>
 </rss>
 </source>
 <target>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Notícias</title>
 </head>
 <body>
 <h1>Notícias</h1>
 …
 </body>
 </html>
 </target>
 <pairings>
 <pairing

source = "/rss[1]/channel[1]/title[1]/text()"
target = "/html[1]/head[1]/title[1]/text()"/>

 <pairing
source = "/rss[1]/channel[1]/title[1]/text()"
target = "/html[1]/body[1]/h1[1]/text()"/>

 </pairings>
</vishnu>

3.4 Generating

The Generator component is responsible for the generation of a specific XSLT
program based on a given pairing. The component receives as input a document in the
paring language introduced in the previous section and, using a second order
transformation, produces a specific XSLT program. This program is already a
transformation that applied to the source document produces the target document, but
is too specific and almost illegible.

The initial program produced by the generator has a single template. The
generator iterates over all elements in //vishnu/target elements while checking if
its absolute path corresponds to any pairing defined in the //pairing/@target
attributes. In case of correspondence, it includes a value-of XSLT element with the
respective //pairing/@source attribute, otherwise it just copies the element.

As an illustration we present the output of this second order stylesheet based on the
example included in the previous subsection.

<xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/text()"/>
 </title>
 </head>

 <body>
 <h1>
 <xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/text()"/>
 </h1>
 …
 </body>
 </html>
</xsl:template>

3.5 Refining

The goal of the Refiner component is to produce a high quality XSLT program from
the initial program received by the Generator. The refinement of the program is
achieved through the application of a set of second order transformations - called
refinements - that simplify and generalize the initial program. These second order
transformations act as rewrite rules of a rewrite process that normalizes the initial
program.

Each refinement introduces either a small change to the XSLT program or
preserves it as it was. The refinement algorithm is rather simple: the set of
refinements is repeatability applied to the program until it converges. Convergence
occurs when none of the available refinements is able to introduce a modification.

The control of the refinement process is implemented in Java, rather than in
XSLT. This separation encourages the modularity and reusability of the refinement
transformations which would be harder to achieve if the whole refinement process
was encoded in a single XSLT. With this approach is easy to introduce new
refinements or to temporarily switch them off. It is easier to change a single and
simple XSLT file than to change the code and recompile the application. There are
two types of refinements - simplifications and abstractions – that are presented in the
following sub-subsections.

3.5.1 Simplifications

Simplifications are refinements that preserve the semantics of the program while
changing its syntax. Preserving the semantics means that, for all documents S and T,
if a program P transforms document S in document T then the program P', resulting
from a simplification refinement, will also transform S to T.

Simplifications can be used for different purposes. They can be used to improve
the readability of XPath expressions or to extract global variables. The following
paragraphs illustrate this concept with concrete simplifications and examples of the
refinements they introduce.

• Context: extracts the common prefix of all the XPath expressions from
value-of elements in the same template and append it as a suffix of the
match attribute on the template element.

Table 1. The Context stylesheet.

Source XSLT Result XSLT
<xsl:template match="a"> ...
 ...<xsl:value-of select="b/c"/>
 ...<xsl:value-of select="b/d"/>
</xsl:template>

<xsl:template match="a/b"> ...
 ...<xsl:value-of select="c"/>
 ...<xsl:value-of select="d"/>
</xsl:template>

• Melt: two or more templates with the same containers are merged into one in

which the match attribute is an expression that combines the terms of the
original attributes match using the operator (|) that computes two or more
node-sets.

Table 2. The Melt stylesheet.

Source XSLT Result XSLT
<xsl:template match="a"> ...
</xsl:template>
<xsl:template match="b"> ...
</xsl:template>

<xsl:template match="a | b"> ...
</xsl:template>

• Extract: strings inside the templates are assigned to global variables.

Table 3. The Extract stylesheet.

Source XSLT Result XSLT
<xsl:template ...> xpto </xsl:template> <xsl:variable name="x" select="'xpto'"/>

...
<xsl:template ...>
 <xsl:value-of select="$x">
 </xsl:template>

• Join: different variables within the same scope and the same content are

merged into a single variable.

Table 4. The Join stylesheet.

Source XSLT Result XSLT
<xsl:variable name="x1"
select="'xpto'"/>
<xsl:variable name="x2"
select="'xpto'"/>

<xsl:variable name="x1" select="'xpto'"/>

3.5.2 Abstractions

Abstractions are refinements that change both the syntax and the semantics of the
program, although the refined program must retain the intended semantics of the
example documents. This means that, for the documents S and T given as example, if

a program P transforms document S in document T then the program P', resulting
from a abstraction refinement, will also transform S to T.

Abstractions can be used for different purposes. For instance, they can be used to
generalize templates and to restructure large templates in several smaller ones. The
following paragraphs illustrate this concept with concrete abstractions and examples
of the refinements they introduce:

• Generalize: two or more templates with the same container and a match
attribute differing only in the "index" are merged into one and is removed the
last predicate of the attribute match .

Table 5. The Generalize stylesheet.

Source XSLT Result XSLT
<xsl:template match="a[1]"> ...
</xsl:template>
<xsl:template match="a[2]"> ...
</xsl:template>
<xsl:template match="a[3]"> ...
</xsl:template>

<xsl:template match="a"> ... </xsl:template>

• Structure: fragment templates that contain XPath expressions with a

common prefix.

Table 6. The Structure stylesheet.

Source XSLT Result XSLT
<xsl:template match="a">
 <X>
 <xsl:value-of select="b/x">
 <xsl:value-of select="b/y">
 </X>
 <xsl:value-of select="c">
</xsl:template>

<xsl:template match="a">
 <xsl:apply-templates select="b"/>
...
 <xsl:value-of select="c">
</xsl:template>

<xsl:template match="b">
 <X>
 <xsl:value-of select="x">
 <xsl:value-of select="y">
 </X>
</xsl:template>

3.6 The Vishnu API

Vishnu was conceived as an interactive tool integrated in Eclipse. Nevertheless, it was
designed as two autonomous components: the editor and the engine. The editor is an
Eclipse plug-in and concentrates all the tasks related with user interaction and
integration with other Eclipse tools. The engine concentrates all the tasks related with
the automatic creation of an XSLT program from examples using second order

transformations. The communication between these two components is regulated by
the Vishnu API.

By separating concerns in these two components we enable the non-interactive use
of Vishnu. The engine has a command line interface to create XSLT programs from
example files. Using Vishnu in this mode is as simple as executing the following
command line.

$ java vishnu.jar source.xml target.xml > program.xsl

 The Vishnu engine can also be invoked from other Java programs through the
Vishnu API. This API may be used to create new user interfaces for Vishnu. For
instance, a web interface based on the Google Web Toolkit (GWT) or a Swing based
desktop interface. In general Vishnu may used by any application needing to create
XSL transformations from examples. Java programs using the API must instantiate
the engine using the static method Engine.getEngine() and use the following methods
exposed by the Vishnu API:

void setSource(Document source)
 Set source document example for the intended transformation.
Document getSource()
 Get given source document example for the intended transformation .
void setTarget(Document target)
 Set target document example for the intended transformation.
Document getTarget()
 Get given example of target document for the intended transformation.
void resetPairings()
 Reset all previously defined pairings.
void addPairing(String exprSource, String exprTarge t)
 Add a pair of XPath location respectively on the source and target documents.
List<Pair> getPairings()
 Returns the list of pairings.
void inferPairings()
 Infer pairings from the given source and target documents.
Document program()
 Produce a XSLT program from the examples and their pairings.
Set<String> getFeatureNames()
 Return a list of names of features controlling the refinement process.
public boolean getFeature(String name)
 Get the given feature status.
public void setFeature(String name, boolean value)
 Set the given feature status.

4 Conclusions and Future Work

We presented the design of Vishnu - a visual XSLT programming tool for Eclipse
based on examples. Visual XSLT programming in Vishnu is based on drawing
correspondences on examples of source and target documents. This data is fed to a

generator that produces an illegible and over specialized XSLT program. The initial
program is then rewritten into a more legible and general XSLT program using a set
of elementary second order transformations called refinements. When no more
refinements can be introduced the process stops and the last version of the program is
cleaned up. This final version is then presented to the programmer on the user’s
interface of Vishnu.

The Vishnu project is in the design phase. At this stage we have a design and a
prototype implementation of the engine. The generator is already implemented and
XSLT programs are produced from examples. The main part of this project - creating
the second order transformations to process the program - is just starting. We
identified the main types of refinements - simplifications and abstractions - and
examples of transformations of each type. We are currently writing a library of
templates to support the development of refinements.

Developing a good set of refinements will be a challenge in itself. Proving that a
particular set of refinements is confluent may be an even harder task. Confluence is an
important property for the rewrite process to ensure its termination and to create a
normal form for XSLT programs. A confluent set of refinements would open the use
of the refiner to any XSLT program and not just to those produced by the generator.
The refiner would be a tool in itself and could be used to refactor XSLT programs
within an XSLT editor.

Vishnu will incorporate also a user interface as an Eclipse plug-in. Currently the
plug-in prototype is less mature than the engine. The main challenge is editing
graphical primitives, such as lines, across XML editing widgets. We plan also to
experiment with web interfaces for developing XSLT transformations based on GWT.

References

1. Stylus Studio - http://www.stylusstudio.com/
2. Altova StyleVision - http://www.altova.com/stylevision.html
3. Tiger XSLT Mapper - http://www.axizon.com/
4. XSL Tools - http://marketplace.eclipse.org/content/xsl-tools
5. oXygen - http://www.oxygenxml.com/eclipse_plugin.html
6. XMLSpy Eclipse editor - http://www.altova.com/xmlspy/eclipse-xml-editor.html
7. OrangevoltXSLT - http://eclipsexslt.sourceforge.net/
8. X-Assist - http://sourceforge.net/projects/x-assist/
9. Dexter-xsl - http://code.google.com/p/dexter-xsl/
10. VXT: A Visual Approach to XML Transformations. Emmanuel Pietriga, Jean-Yves Vion-

Dury and Vincent Quint. Proceedings of the 2001 ACM Symposium on Document
engineering, USA

11. FOA. Formatting Objects Authoring tool - http://foa.sourceforge.net

