Visual Programming of XSLT from examples

José Paulo Lehbnd Ricardo Queirds

' DCCIFCUP & CRACS,
zp@dcec.fc.up.pt

’ DI/ESEIG & CRACS,
ricardo.queiros@eu.ipp.pt

Abstract. Vishnu is a tool for XSLT visual programming inlipse - a popular
and extensible integrated development environmdRather than writing the
XSLT transformations, the programmer loads or emits document instances,
a source document and its corresponding targetndext) and pairs texts
between then by drawing lines over the documentds Torm of XSLT
programming is intended for simple transformatibesveen related document
types, such as HTML formatting or conversion amasimilar formats.
Complex XSLT programs involving, for instance, resiue templates or second
order transformations are out of the scope of MishkVe present the
architecture of Vishnu composed by a graphicaloediind a programming
engine. The editor is an Eclipse plug-in wherepghegrammer loads and edits
document examples and pairs their content usinghgeal primitives. The
programming engine receives the data collectechbyetitor and produces an
XSLT program. The design of the engine and the ge®f creation of an
XSLT program from examples are also detailed.dttstwith the generation of
an initial transformation that maps source docuntenthe target document.
This transformation is fed to a rewrite process igheach step produces a
refined version of the transformation. Finally, tih@nsformation is simplified
before being presented to the programmer for furd@ing.

Keywords: XML, XSL Transformations, Second order.

1 Introduction

Computer programs are texts written in a programgmienguage. They are an
interrelated set of instructions that a computerstmexecute autonomously. The
relationships among instructions are expresseduadiyt using identifiers. Visual
programming languages provide an alternative toube of textual identifiers by
using graphical elements to represent structurecandect related parts. The goal of
visual programming is to support non-textual int¢in to help novice programmers
and/or to increase productivity.

The majority of the "visual" programming environnerfocus only for the
creation of graphical interfaces, using text editéor programming the logic of

programs. In fact, truly visual programming enviments were not successfully
implemented for the general-purpose languages sscBava or C + +. They are
mostly used for introductory programming language®d by children or non-
programmers. They are sometimes used for domatifgpkenguages and languages
for graphical interface programming, as is arguabé/case of XSLT.

The aim of this paper is the design of a visuagprmming tool for XSLT. This
language was designed for XML style sheet definjtlaut has won a leading role as a
tool for conversion among document types in thigmfdism. The visual
programming tool is based on examples. The progmmprovides instances of the
source document and the corresponding target doduard pairs corresponding
texts in both documents using graphical primitivé$is data is supplied to a
generator that creates an initial XSLT program.oBdcorder XSLT transformations
refine it to produce a more structured and gen€8ET program.

This visual approach of XSLT programming has obsidumitations. Only a
subset of all possible XSLT transformations is pangmable by pairing texts on a
source and target documents. For instance, seaoled wansformations or recursive
templates are out of its scope. Use cases fomMistie formatting XML documents
in XHTML and conversion among similar formats. Fustance, creating an XHTML
view of an RSS feed and converting metadata ameweyal XML formats are among
the possible uses of Vishnu. Moreover, we do npeekthat the automated features
of Vishnu to produce the final version of an XSLAogram. We view its final result
as a skeleton of a transformation that can be duntéfined using other tools already
available in Eclipse.

The remainder of this paper is organized as follasestion 2 explores some of
the related work in this area. In the following tsat we present the design of a visual
programming environment for XSLT, more precisetg,architecture and its internal
components used to produce and refine an XSLT pmgFinally, we conclude with
a summary of the major contributions of this pagrea a prospect of future work.

2 Related work

There are several environments for programming 8LK Usually these tools are
integrated in XML IDE's or in general purpose IDEigh as Eclipse. In the former
we can highlight StyleVision and Stylus Studio. I8Y%ision [1] is a commercial
visual stylesheet designer for transforming XMLallbows drag and dropping XML
data elements within an WYSIWYG interface. An XSkilylesheet is automatically
generated and can be previewed using the FOPibulswser. Stylus Studio's [2] is
another commercial XML IDE that includes a WYSIWYXSLT designer. The
edition process is guided by simple drag-and-dnogrations without requiring prior
knowledge of XSLT.

There are also several plug-ins for Eclipse fotiegliXSLT and the Tiger XSLT
Mapper [3] is the most prominent. It is a simplevelepment environment that
supports automatic mappings between XML structames can be edited using the
drag-and-drop visual interface. While the mappiagd XML structures are modified,

the XSLT template is automatically generated andifireml. Other examples of
Eclipse plug-ins address the XSLT edition [4,5&] ¢he XSLT execution [7,8].

There are other tools analogue to Vishnu that aténtegrated into Eclipse, as the
dexter-xsl [9] which is intended to be used frora tommand line, the VXT [10] a
visual programming language for the specificatidnX®IL transformations in an
interactive environment and FOA [11] an XSL-FO dnapl authoring tool to create
XSL-FO stylesheets. It includes a tree visualizatstcheme to represent the source
XML document and the target FO tree structure. Rf@Aerates an XSLT stylesheet
that transforms XML content into an XSL-FO document

Despite the existence of several environments fogramming in XSLT, usually
integrated into IDE's, they do not use visual editfor programming. Moreover, as
far as we know, none of the graphical XSLT prograngrenvironment generates
programs from examples.

3 TheVishnu application

In this section we present the design of a visudLK programming tool called
Vishnu. The Vishnu application aims to generate X$lansformations from pairs of
related documents, corresponding to source ancettallgcuments of an XSLT
transformation.

3.1 Architecture

The architecture of the Vishnu application is déddn two parts - the Editor and the
Engine - as depicted in Figure 1. It includes thiofving components:

» the Editor is an Eclipse plug-in that loads a pair of XML dowents,
respectively, a source and a target document &{SUT transformation. The
Editor uses the Vishnu API to interact with the Wis Engine (e.g. set of
the imported documents, set a new map, generad€Shé& program);

» the Mapper maintains an XML map file identifying the corresplences
between the two documents. These identifications d¢e inferred
automatically by the Mapper or manually set throtlghEditor;

* the Generator uses a second order transformation to generagecifis
XSLT program, based on the correspondences sétebyapper;

* theRefiner receives the previous XSLT file and uses it asiiripr a serie of
transformations. These transformations aim to eefive previously achieved
XSLT program. The final result would be a generBLX file representing a
more structured and generic transformation betveegndocument instances
of the respective types;

» the Cleaner receives the final transformation produced by Rediner and
replaces XSLT instructions by corresponding comsitons in the target
language. For instance, attributes constructed whthxsl:attribute
element and thesl:value-of are replaced by an attribute-value pair with
the XPath expressions surrounded by brackets.

.,
T;réet Generator
Vishnu
API
#1 #, #n
XSLT XSLT
Refiner
Program [<— Cleaner
Editor Engine

Fig. 1. Vishnu architecture.

In the following subsections we detail the intero@amponents of Vishnu.

3.2 Editing

The front-end of Vishnu is an Eclipse plug-in. histplug-in the "programmer” edits
a pair of XML documents as examples of source aridrget documents for the
intended XSLT transformation. These XML instances/e created:

« from scratch, using the two XML Editors includedthe GUI;

e guided by their type definitions, using the Ecligeenpletion mechanism.

In the last approach the built-in XML instargenerator receives a schema file and
automatically generates a valid instance. The usan also define several
configuration options such as create optional etegfattributes, create a first choice
of a required choice or even fill elements andlaites with data.

Regardless of the choice, the user can idethigéy correspondences between the
two documents by clicking in the source and tatget, respectively. The Editor
component draws a line connecting both texts. Anae of the graphical user
interface (GUI) of the plug-in for Eclipse is shownFigure 2.

Java - test/new_fik Pl
File Edit Navigate S

form

Project Run EditorMenu Window Help
D OBl -0 Q- LHEET SO S A rori@

ditor £3 =a

="T50-8850-1"7>
de_preparo="5 minutos" tempo_de_cozim:

<ingrediente quantida >
<ingrediente quantidade=" «<h3> Tempo de preparo: 5 minutos< /h3>
<ingrediente quantidade="1" unidade="colheres de cha">Sal</ingred <h3>Tempo de cozimento: 1 hora</h3>
</ingredientes> <h3>Ingredientes</h3>

<instrucoes>

ssolv

os ingredi

umpa

Fig.w2. The Vishnu' E‘clipsé plug-in.

The GUI will include two side-by-side windows fodigng respectively the
source and target transformations. The widgetshefd windows support XML
editing for highlighting the XML tags and enablenggetion based on DTD or XML
Schema, if declared for the document.

The programmer is able to pair contents onetlviadows by drawing links where
the origin is on the source document and the csatim is on the target window.
Origin and destination must be character datagetttxt nodes or attribute values. As
can be seen in the example, this correspondentetia mapping since the same text
on the source document may be used in severalspaiithe target document.

3.3 Pairing

Correspondences can be set manually through therE@UI or inferred by the
Engine. When in automatic pairing mode Vishnu tteeglentify pairs based on:

» Text matches (text or attribute nodes);

» Text aggregation.

In the first mode strings occurring on text andilatite type nodes on the source
document are searched on the text and attributesnotl the target document, and
only exact matches are considered. In this modeghesoccurrence of a string in the
source document may be paired with several occoesein the target document, as
depicted in Figure 3.

XML source XML target
(RSS) (XHTML)
<html>
<rssversion="2.0"> <EE:|:1
<channel> —

<link>..<fTink>
: . </head>

<body>
<hl>

<fhl>

<description>...</descri ptrom
<item>...<fitem>

</channel>
<frss>
</body>
<fhtml>

Fig. 3. Automatic mapping - exact match between singlestex

In the second mode Vishnu tries to aggregate &ringhe source document to
create a string in the target document. In Figuneedillustrate with a simple case
where 3 strings occurring in attributes and texdescan be concatenated into a part
of the text node on the target document. In thiglenseveral strings on the source
document can be paired with strings on the targetichent.

XML source XML target

<receita nome="pdo"> <html>
<ingrediente

quantidade <body>
unidadeg'xicaras |k
|Farinha S 3 xicaras de Farinhaf/li=

<fingrediente> <liz..<fli>
</receita> <ful>
</body>
<fhtml=>

Fig. 4. Automatic mapping - subset of aggregation of texts

After automatic pairing, the inferred correspond=nare presented in the GUI
with lines connecting the two XML documents. Theemugan then manually
reconstruct the pairing of string between both daeents, as explained in the previous
sub-section.

The result of pairing the examples is a documeciuding the actual documents
and a list of pairs of XPath expressions relatingm. This document is formally
defined by an XML schema depicted diagrammatidallyigure 5.

vishnuType pairingsType pairingType

[e] source [0.7] anyType e [€] paiting [0.7] pairingType @ source string
- [Eltarget [0.7] anyType @ target string

[€] pairings [0.%] pairingsType

Fig. 5. The pairing XML language.

The pairing XML language has an element callatinu as the root element
with three top elements:

* source - a copy of the source document;

» target - a copy of the target document;

e pairings - list of pairing relating the two documents.

Each correspondence is defined bypaiing element with two attributes for
selecting textual occurrences in both documentsrcgoand target. The source
attribute includes a valid XPath expression sabecthe text to pair in the source
document. The target attribute includes a valid tKRpression selecting the text of
the target document. Based on the example of &i§uwe present the correspondent
XML pairing language:

<vishnu xmlns="http://www.dcc.fc.up.pt/vishnu">
<source>
<rss version="2.0" xmIns="http://backend.userlan d.com/rss2"/>
<channel>

<title>Noticias</title>
<link>...</link>
<description>...</description>
<item>

</item>
</channel>
</rss>
</source>
<target>
<html xmIns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Noticias</title>
</head>
<body>
<h1>Noticias</h1>

</body>
</html>
</target>
<pairings>
<pairing
source = "/rss[1])/channel[1]/title[1])/text()"
target = "/html[1]/head[1]/title[1]/text()"/>
<pairing
source = "/rss[1])/channel[1]/title[1])/text()"
target = "/html[1]/body[1]/h1[1]/text()"/>
</pairings>
</vishnu>

3.4 Generating

The Generator component is responsible for the rgéina of a specific XSLT
program based on a given pairing. The componegeives as input a document in the
paring language introduced in the previous sectmad, using a second order
transformation, produces a specific XSLT progranmisTprogram is already a
transformation that applied to the source documenduces the target document, but
is too specific and almost illegible.

The initial program produced by the generator hasirgjle template. The
generator iterates over all elementghishnu/target elements while checking if
its absolute path corresponds to any pairing ddfiimethe //pairing/@target
attributes. In case of correspondence, it incldesue-of XSLT element with the
respective/pairing/@source attribute, otherwise it just copies the element.

As an illustration we present the output of thisss&l order stylesheet based on the
example included in the previous subsection.

<xsl:tenplate match="/">
<html>
<head>
<title>
<xsl : val ue- of
sel ect ="/vi shnu/source/rss[1]/channel [1]/title[1]/text()"/>
<[title>
</head>

<body>
<h1l>
<xsl : val ue- of
sel ect ="/ vi shnu/ source/rss[1]/channel [1]/title[1]/text()"/>
</h1>

<)Body>
</html>
</ xsl:tenpl ate>

3.5 Refining

The goal of the Refiner component is to producégh fuality XSLT program from
the initial program received by the Generator. TaBnement of the program is
achieved through the application of a set of secort®r transformations - called
refinements - that simplify and generalize theiahiprogram. These second order
transformations act as rewrite rules of a rewritecpss that normalizes the initial
program.

Each refinement introduces either a small changeh& XSLT program or
preserves it as it was. The refinement algorithmrather simple: the set of
refinements is repeatability applied to the prognamtil it converges. Convergence
occurs when none of the available refinements|is bintroduce a modification.

The control of the refinement process is implemerite Java, rather than in
XSLT. This separation encourages the modularity mcability of the refinement
transformations which would be harder to achievéhd@ whole refinement process
was encoded in a single XSLT. With this approasheasy to introduce new
refinements or to temporarily switch them off. idteasier to change a single and
simple XSLT file than to change the code and redtEnthe application. There are
two types of refinements - simplifications and shstions — that are presented in the
following sub-subsections.

3.5.1 Simplifications

Simplifications are refinements that preserve temantics of the program while
changing its syntax. Preserving the semantics matsfor all documents S and T,
if a program P transforms document S in documettieh the program P', resulting
from a simplification refinement, will also transfo S to T.

Simplifications can be used for different purposHEsey can be used to improve
the readability of XPath expressions or to extrgiobal variables. The following
paragraphs illustrate this concept with concretepéifications and examples of the
refinements they introduce.

e Context: extracts the common prefix of all the XPath expi@ss from

value-of elements in the same template and append it affia ef the
match attribute on théemplate element.

Tablel. The Context stylesheet.

Source XSLT Result XSLT

<xsl:template match="a"> ... <xsl:template match="a/b"> ...
...<xsl:value-of select="b/c"/> ...<xsl:value-of select="c"/>
...<xsl:value-of select="b/d"/> ...<xsl:value-of select="d"/>

</xsl:template> </xsl:template>

e Mét: two or more templates with the same containersremged into one in
which thematch attribute is an expression that combines the tesfrthe
original attributes match using the operator (Bt tbomputes two or more
node-sets.

Table2. The Melt stylesheet.

Source XSLT Result XSLT
<xsl:template match="a"> ... <xsl:template match="a | b">
</xsl:template> </xsl:template>

<xsl:template match="b"> ...
</xsl:template>

» Extract: strings inside the templates are assigned to blavables.

Table3. The Extract stylesheet.

Source XSLT Result XSLT

<xsl:template ...> xpto </xsl:template> <xsl:variéddname="x" select=""xpto"/>
<xsl:template ...>

<xsl:value-of select="$x">
</xsl:template>

« Join: different variables within the same scope and same content are
merged into a single variable.

Table4. The Join stylesheet.

Source XSLT Result XSLT
<xsl:variable name="x1" <xsl:variable name="x1" select=""xpto"'/>
select=""xpto"'/>

<xsl:variable name="x2"
select=""xpto"'/>

3.5.2 Abstractions

Abstractions are refinements that change both yimas and the semantics of the
program, although the refined program must rethm intended semantics of the
example documents. This means that, for the dootsy#®and T given as example, if

a program P transforms document S in document f the program P', resulting
from a abstraction refinement, will also transfdgno T.

Abstractions can be used for different purposes.ifsiance, they can be used to
generalize templates and to restructure large &aplin several smaller ones. The
following paragraphs illustrate this concept wittncrete abstractions and examples
of the refinements they introduce:

* Generalize: two or more templates with the same container anthtch
attribute differing only in the "index" are mergiedio one and is removed the
last predicate of the attributeatch .

Table5. The Generalize stylesheet.

Source XSLT Result XSLT

<xsl:template match="a[1]"> ... <xsl:template match="a"> ... </xsl:template>
</xsl:template>

<xsl:template match="a[2]"> ...

</xsl:template>

<xsl:template match="a[3]"> ...

</xsl:template>

e Structure: fragment templates that contain XPath expressioith a
common prefix.

Table6. The Structure stylesheet.

Source XSLT Result XSLT
<xsl:template match="a"> <xsl:template match="a">
<X> <xsl:apply-templates select="b"/>
<xsl:value-of select="b/x">
<xsl:value-of select="b/y"> <xsl:value-of select="c">
</X> </xsl:template>
<xsl:value-of select="c">
</xsl:template> <xsl:template match="b">
<X>

<xsl:value-of select="x">
<xsl:value-of select="y">
</X>
</xsl:template>

3.6 TheVishnu API

Vishnu was conceived as an interactive tool intesgtén Eclipse. Nevertheless, it was
designed as two autonomous components: the editbthee engine. The editor is an
Eclipse plug-in and concentrates all the taskstadlanith user interaction and
integration with other Eclipse tools. The engineaentrates all the tasks related with
the automatic creation of an XSLT program from epgbe® using second order

transformations. The communication between thegedmmponents is regulated by
the Vishnu API.

By separating concerns in these two componentsnable the non-interactive use
of Vishnu. The engine has a command line intertacereate XSLT programs from
example files. Using Vishnu in this mode is as dangs executing the following
command line.

$ java vishnu.jar source.xml target.xml > prograsi.x

The Vishnu engine can also be invoked from otlaaaJorograms through the
Vishnu API. This API may be used to create new ustsrfaces for Vishnu. For
instance, a web interface based on the Google VWelkit (GWT) or a Swing based
desktop interface. In general Vishnu may used by application needing to create
XSL transformations from examples. Java progranmisguthe APl must instantiate
the engine using the static methedgine.getEngine@nd use the following methods
exposed by the Vishnu API:

void setSource(Document source)

Set source document example for the intendatstormation.
Document getSource()

Get given source document example for thended transformation .
void setTarget(Document target)

Set target document example for the intericltsformation.
Document getTarget()

Get given example of target document for thierided transformation.
void resetPairings()

Reset all previously defined pairings.
void addPairing(String exprSource, String exprTarge t)

Add a pair of XPath location respectively oa #ource and target documents.
List<Pair> getPairings()

Returns the list of pairings.
void inferPairings()

Infer pairings from the given source and tadmtuments.
Document program()

Produce a XSLT program from the examples aatt thairings.
Set<String> getFeatureNames()

Return a list of names of features controlling refinement process.
public boolean getFeature(String name)

Get the given feature status.
public void setFeature(String name, boolean value)

Set the given feature status.

4 Conclusions and Future Work

We presented the design of Vishnu - a visual XSkdgmmming tool for Eclipse
based on examples. Visual XSLT programming in Vishs based on drawing
correspondences on examples of source and targetreémts. This data is fed to a

generator that produces an illegible and over sficed XSLT program. The initial
program is then rewritten into a more legible aedaral XSLT program using a set
of elementary second order transformations callefihements. When no more
refinements can be introduced the process stopsharidst version of the program is
cleaned up. This final version is then presentedht programmer on the user’s
interface of Vishnu.

The Vishnu project is in the design phase. At 8Biage we have a design and a
prototype implementation of the engine. The gewerat already implemented and
XSLT programs are produced from examples. The maih of this project - creating
the second order transformations to process thgrgmo - is just starting. We
identified the main types of refinements - simphlfiions and abstractions - and
examples of transformations of each type. We ameently writing a library of
templates to support the development of refinements

Developing a good set of refinements will be a lemagle in itself. Proving that a
particular set of refinements is confluent may beeaen harder task. Confluence is an
important property for the rewrite process to easits termination and to create a
normal form for XSLT programs. A confluent set efinements would open the use
of the refiner to any XSLT program and not justhose produced by the generator.
The refiner would be a tool in itself and could Used to refactor XSLT programs
within an XSLT editor.

Vishnu will incorporate also a user interface asEatipse plug-in. Currently the
plug-in prototype is less mature than the enginke Tain challenge is editing
graphical primitives, such as lines, across XMLtiadi widgets. We plan also to
experiment with web interfaces for developing XStdnsformations based on GWT.

References

Stylus Studio - http://www.stylusstudio.com/

Altova StyleVision - http://www.altova.com/styleids.html

Tiger XSLT Mapper - http://www.axizon.com/

XSL Tools - http://marketplace.eclipse.org/contesittools

oXygen - http://www.oxygenxml.com/eclipse_plugimtht

XMLSpy Eclipse editor - http://www.altova.com/xmigpclipse-xml-editor.html

OrangevoltXSLT - http://eclipsexslt.sourceforge/net

X-Assist - http://sourceforge.net/projects/x-agsist

Dexter-xsl - http://code.google.com/p/dexter-xsl/

0. VXT: A Visual Approach to XML Transformations. Emmael Pietriga, Jean-Yves Vion-
Dury and Vincent Quint. Proceedings of the 2001 A@yYmposium on Document
engineering, USA

11. FOA. Formatting Objects Authoring tool - http://feaurceforge.net

PooNogohr~wNRE

