
PExIL:
Programming Exercises

Interoperability Language

Ricardo Queirós1

and José Paulo Leal2

1 CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

2 CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

Abstract. Several standards appeared in recent years to formalize the metadata
of learning objects, but they are still insufficient to fully describe a specialized
domain. In particular, the programming exercise domain requires
interdependent resources (e.g. test cases, solution programs, exercise
description) usually processed by different services in the programming
exercise life-cycle. Moreover, the manual creation of these resources is time-
consuming and error-prone leading to what is an obstacle to the fast
development of programming exercises of good quality.
This paper focuses on the definition of an XML dialect called PExIL
(Programming Exercises Interoperability Language). The aim of PExIL is to
consolidate all the data required in the programming exercise life-cycle, from
when it is created to when it is graded, covering also the resolution, the
evaluation and the feedback. We introduce the XML Schema used to formalize
the relevant data of the programming exercise life-cycle. The validation of this
approach is made through the evaluation of the usefulness and expressiveness
of the PExIL definition. In the former we present the tools that consume the
PExIL definition to automatically generate the specialized resources. In the
latter we use the PExIL definition to capture all the constraints of a set of
programming exercises stored in a learning objects repository.

Keywords: eLearning, Learning Objects, Content Packaging, Interoperability.

1 Introduction

The concept of Learning Object (LO) is fundamental for producing, sharing and
reusing content in eLearning [1]. In essence a LO is a container with educational
material and metadata describing it. Since most LOs just present content to students
they contain documents in presentation formats such as HTML and PDF, and
metadata describing these documents using Learning Objects Metadata (LOM),
Sharable Content Object Reference Model (SCORM) [2] or other generic metadata

format. When a LO includes exercises to be automatically evaluated by an eLearning
system, it must contain a document with a formal description for each exercise. The
Question and Tests Interoperability (QTI) [3] is an example of a standard for this kind
of definitions that is supported by several eLearning systems. However, QTI was
designed for questions with predefined answers and cannot be used for complex
evaluation domains such as the programming exercise evaluation [4]. A programming
exercise requires a collection of files (e.g. test cases, solution programs, exercise
descriptions, feedback) and special data (e.g. compilation and execution lines). These
resources are interdependent and processed in different moments in the life-cycle of
the programming exercise.

The life cycle comprises several phases: in the creation phase the content author
should have the means to automatically create some of the resources (assets) related
with the programming exercise such as the exercise description and test cases and the
possibility to package and distribute them in a standard format across all the
compatible systems (e.g. learning management systems, learning objects repositories);
in the selection phase the teacher must be able to search for a programming exercise
based on its metadata from a repository of learning objects and store a reference to it
in a learning management system; in the presentation phase the student must be able
to choose the exercise description in its native language and a proper format (e.g.
HTML, PDF); in the resolution phase the learner should have the possibility to use
test cases to test his attempt to solve the exercise and the possibility to automatically
generate new ones; in the evaluation phase the evaluation engine should receive
specialized metadata to properly evaluate the learner’s attempt and return
enlightening feedback. All these phases require a set of inter-dependent resources and
specialized metadata whose manual creation would be time-consuming and error-
prone.

This paper focuses on the definition of an XML dialect called PExIL
(Programming Exercises Interoperability Language). The aim of PExIL is to
consolidate all the data required in the programming exercise life-cycle, from when it
is created to when it is graded, covering also the resolution, the evaluation and the
feedback. We introduce the XML Schema used to formalize the relevant data of the
programming exercise life-cycle. The validation of this approach is made through the
evaluation of the usefulness and expressiveness of the PExIL definition. In the
former, we use a PExIL definition to generate several resources related to the
programming exercise life-cycle (e.g. exercise descriptions, test cases, feedback files).
In the latter, we check if the PExIL definition covers all the constraints of a set of
programming exercises in a repository.

The remainder of this paper is organized as follows. Section 2 traces the evolution
of standards for LO metadata and packaging. In the following section we present the
PExIL schema with emphasis on the definitions for the description, test cases and
feedback of the programming exercise. Then, we evaluate the definition of PExIL and
conclude with a summary of the main contributions of this work and a perspective of
future research.

2 Learning object standards

Current LO standards are quite generic and not adequate to specific domains, such as
the definition of programming exercises. The most widely used standard for LO is the
IMS Content Packaging (IMS CP) [5]. This content packaging format uses an XML
manifest file wrapped with other resources inside a zip file. The manifest includes the
IEEE Learning Object Metadata (LOM) standard [6] to describe the learning
resources included in the package. However, LOM was not specifically designed to
accommodate the requirements of automatic evaluation of programming exercises.
For instance, there is no way to assert the role of specific resources, such as test cases
or solutions. Fortunately, IMS CP was designed to be straightforward to extend,
meeting the needs of a target user community through the creation of application
profiles. A well known eLearning application profile is SCORM that extends IMS CP
with more sophisticated sequencing and Contents-to-LMS communication.

Following this extension philosophy, the IMS Global Learning Consortium (GLC)
upgraded the Question & Test Interoperability (QTI) specification [3]. QTI describes
a data model for questions and test data and, from version 2, extends the LOM with
its own metadata vocabulary. QTI was designed for questions with a set of pre-
defined answers, such as multiple choice, multiple response, fill-in-the-blanks and
short text questions. It supports also long text answers but the specification of their
evaluation is outside the scope of the QTI. Although long text answers could be used
to write the program's source code, there is no way to specify how it should be
compiled and executed, which test data should be used and how it should be graded.
For these reasons we consider that QTI is not adequate for automatic evaluation of
programming exercises, although it may be supported for sake of compatibility with
some LMS. Recently, IMS GLC proposed the IMS Common Cartridge (CC) [7] that
bundles the previous specifications and its main goal is to organize and distribute
digital learning content.

3 PExIL

In this section we present PExIL, an XML dialect that aims to consolidate all the data
required in the programming exercise life-cycle. This definition is formalized through
the creation of a XML Schema. In the following subsections we present the PExIL
XML Schema organized in three groups of elements:

Textual – elements with general information about the exercise to be presented to
the learner. (e.g. title, date, challenge);
Specification – elements with a set of restrictions that can be used for generating
specialized resources (e.g. test cases, feedback);
Programs – elements with references to programs as external resources (e.g.
solution program, correctors) and metadata about those resources (e.g. compilation,
execution line, hints).

3.1 Textual elements

Textual elements contain general information about the exercise to be presented to the
learner. This type of elements can be used in several phases of the programming
exercise life-cycle: in the selection phase as exercise metadata to aid discoverability
and to facilitate the interoperability among systems (e.g. LMS, IDE); in the
presentation phase as content to be present to the learner (e.g. exercise description); in
the resolution phase as skeleton code to be included in the student’s project solution.

The following table presents the textual elements of the PExIL schema and
identifies the phases where they are involved.

Table 1. Textual elements.

Element Selection Presentation Resolution Evaluation
title x x
creation/authors/author x x
creation/date x x
creation/purpose x x
challenge x
context x
skeleton x x

The title element represents the title of the programming exercise. This

mandatory element uses the xml:lang attribute to specify the human language of the
element’s content. The definition of this element in the XML Schema has the
maxOccurs attribute set to unbound allowing the same information to be recorded in
multiple languages. The creation element contains data on the authorship of the
exercise and includes the following sub-elements: authors with information about
the author(s) of the exercise organized by several author elements (represented as
RDF elements1); date which includes the date of the generation of the exercise and
purpose that describes the event for which the exercise was created or the institution
where the exercise will be used. The context element is an optional field used to
contextualize the student with the exercise. The challenge element is the actual
description of the exercise. Its content model is defined as mixed content to enable
character data to appear between XHTML child-elements. This XML markup
language will be used to enrich the formatting of the exercises descriptions. The
skeleton element refers to a resource containing code to be included in the student’s
project solution.

3.2 Specification elements

The goal of defining programming exercises as learning objects is to use them in
systems supporting automatic evaluation. In order to evaluate a programming exercise
the learner must submit a program in source code to an Evaluation Engine (EE) that

1 Representing vCard Objects in RDF - W3C Member Submission 20 January 2010 -

http://www.w3.org/Submission/vcard-rdf/

judges it using predefined test cases - a set of input and output data. In short, the EE
compiles and runs the program iteratively using the input data (standard input) and
checks if the result (standard output) corresponds to the expected output. Based on
these correspondences the EE returns an evaluation report with feedback.

In the PExIL schema, the input and output top-level elements are used to
describe respectively the input and the output test data. These elements include three
sub-elements: description , example and specification . The description
element includes a brief description of the input/output data. The example element
includes a predefined example of the input/output test data file. Both elements comply
with the specification element that describes the structure and content of the test
data.

Table 2. Specification elements.

Element Selection Presentation Resolution Evaluation
input/specification x x x
output/specification x x x

This definition can be used in several phases of the programming exercise life-

cycle as depicted in Table 2: by 1) the content author to automatically generate an
input and output test example to be included on the exercise description for
presentation purposes; 2) the learner to automatically generate new test cases to
validate his attempt; 3) the Evaluation Engine to evaluate a submission using the test
cases.

The specification element (Fig. 1) contains two attributes and two top-level
elements. The attributes line_terminator and value_separator define
respectively the newline and space characters of the test data. The two top-level
elements are: line which defines a test data row and repeat which defines an
iteration on a set of nested elements. The number of iterations is controlled by the
value of the count attribute.

Fig. 1 The specification element.

The line element defines a data row. Each row contains one or more variables. A
variable in the specification model must have a unique name which is used to refer

values from one or more places in the specification element. A variable is
represented in the PExIL schema with the data element containing the attributes:

• id - defines the name of the variable. To access a variable one must use the
id attribute preceded by the character $ to enable the further resolution and
evaluation of XPath expressions while processing the specification model;

• type – defines the variable data type (e.g. integer, float, string, enum). In the
case of an enumeration the values are presented as a text child node;

• value – represents the value to be included in the input/output test file. If
filled the variable acts as a constant. Otherwise, the value can be
automatically generated based on a set of constraints - the type , min , max or
spec attributes;

• min/max – represents value constraints by defining limits on the values. The
semantic of these attributes depends exclusively on the data type: may
represent the ranges of a value (integer and float), the minimum/maximum
number of characters (string) or a range of values to be selected from an
enumeration list;

• spec - regular expression for generating/matching strings of text, such as
particular characters, words, or patterns of characters.

The following XML excerpt shows the specification elements for the input
and output test data of an exercise. The exercise challenge is given three numbers to
verify that the last number is between the first two.

Example of the input test description: “The input begins with a single positive integer on a line
by itself indicating the number of the cases following. This line is followed by a blank line, and
there is also a blank line between two consecutive inputs. Each line of input contains three float
numbers (num1, num2 and num3) ranging values between 0 and 1000. “.

<specification line_terminator=”\n” value_separator =” ”>
 <line><data id=”numTestCases” type=”int” value=”3” /></line>
 <line/>
 <repeat count=”$numTestCases”>
 <line>
 <data id=”num1” type=”float” min=”0” max=”1000”/>
 <data id=”num2” type=”float” min=”0” max=”1000”/>
 <data id=”num3” type=”float” min=”0” max=”1000”/>

<feedback when=”$num1>$num2”>
Numbers that limit the range can be given in descen ding order

</feedback>
 </line>
 <line/>
 </repeat>
</specification>

Example of the output test description: “The output must contain a boolean for each test case
separated by a blank line between two consecutive outputs. “

<specification line_terminator=”\n” value_separator =” ”>
 <repeat count=”$numTestCases”>
 <line><data id=”result” type=”enum” value=”1”>Tru e False</data></line>

<line/>
 </repeat>

</specification>

As said before, the EE is the component responsible for the assessment of an
attempt to solve a particular programming exercise posted by the student. The
assessment relies on predefined test cases. Whenever a test case fails a static
feedback message (e.g. "Wrong Answer", "Time Limit Exceed", and “Execution
Error") associated with the respective test case is generated. Beyond the static
feedback of the evaluator, the PExIL schema includes a feedback element in the
specification element. This element defines a dynamic feedback message to be
presented to the student based on the evaluation of an XPath expression included in
the when attribute. This expression can include references to input and output
variables or even dependencies between both. If the expression is evaluated as true
then the text child node of the feedback element is used as the feedback message.

3.3 Program elements

Program elements contain references to program source files as external resources
(e.g. solution program, correctors) and metadata about those resources (e.g.
compilation, execution line, hints). These resources are used mostly in the evaluation
phase of the programming exercise life-cycle (Table 3) to allow the EE to produce an
evaluation report of a students’ attempt to solve a programming exercise.

Table 3. Program elements.

Element Selection Presentation Resolution Evaluation
solution x x
corrector x
hints x x

A program element is defined with the programType type. This type is composed

by seven attributes: id – an unique identifier for the resource; language – identifies
the programming language used to code the resource (e.g. JAVA, C, C#, C++,
PASCAL); compiler/executer – defines the name of the compiler/executer;
version – identifies the version of the compiler; source/object - defines the
name of the program source/object file; compilation – defines a command line to
compile the source code; and execution – defines a command line to execute the
compiled code;

There are two program elements in the PExIL schema: the solution and the
corrector elements. The solution element contains a reference to the program
solution file. The corrector element is optional and refers to custom programs that
change the general evaluation pattern for a given exercise. The metadata about the
program type resources is consolidated in the hints element aggregating a set of
recommendations for the submission, compilation and execution of exercises.

4 Using PExIL

In this section we validate the PExIL definition according to: its usefulness while
using the PExIL definition as input of a set of tools related to the programming
exercise life-cycle (e.g. generation of a IMS CC learning object package); and its
expressiveness while using the PExIL definition to capture all the constraints of a set
of programming exercises in a repository (e.g. description of crimsonHex
programming exercises).

4.1 Generating a IMS CC learning object package

In this subsection we validate the usefulness of the PExIL definition by detailing the
generation of an IMS CC LO package based on a valid PExIL instance. An IMS CC
object is a package standard that assembles educational resources and publishes them
as reusable packages in any system that implements this specification (e.g. Moodle
LMS).

Fig. 2 Learning Object package generation.

A Generator tool (e.g. PexilUtils) uses the PExIL definition to produce a set of
resources related with a programming exercise such as exercise descriptions in
multiple languages or input and output test files.The LO generation is depicted in Fig.
2. The generation of a LO package is straightforward. The Generator tool uses as
input a valid PExIL instance and a program solution file and generates 1) an exercise
description in a given format and language, 2) a set of test cases and feedback files
and 3) a valid IMS CC manifest file. Then, a validation step is performed to verify
that the generated tests cases meet the specification presented on the PExIL instance
and the manifest complies with the IMS CC schema. Finally, all these files are
wrapped up in a ZIP file and deployed in a Learning Objects Repository. In the
following sub-subsections we present with more detail these three generations.

4.1.1 Exercise description generation

For the generation of an exercise description (Fig. 3) it is important to acquire the
format and the human language of the exercise description. The former is given by the
Generator tool and the latter is obtained from the total number of occurrences of the
xml:lang attribute in the title element of the PExIL instance.

The Generator tool receives as input a valid PExIL instance and a respective XSLT
2.0 file and uses the Saxon XSLT 2.0 processor combined with the xsl:result-

document element to generate a set of .FO files corresponding to the human
languages values founded in the xml:lang attribute. The following code shows an
excerpt of the Pdf.xsl file. This stylesheet generates the .FO files based on the
textual elements of a PExIL instance:

<xsl:template match="pexil:title">
 <xsl:variable name="uri" select="concat('desc',@ xml:lang,'.fo')"/>
 < xsl:result-document href="resources/{$uri}">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/For mat">

 <!—apply templates over the textual elements --> ...
 </fo:root>

 </ xsl:result-document>
</xsl:template>

In the next step, the .FO files are used as input to the Apache FOP formatter – an

open-source and partial implementation of the W3C XSL-FO 1.0 standard -
generating for each .FO file the corresponding PDF file.

Fig. 3 Generation of the exercise descriptions.

The use of the PExIL definition to generate exercise descriptions does not end

here since the PExIL definition is included in the LO itself making it possible, at any
time of the LO life-cycle, to regenerate the exercise description in other different
formats.

The description also includes a description and an example of a test case. In the
case of the absence of the input/description and input/example the Generator
relies on the specification element to generate the test data and include it in the
exercise description.

4.1.2 Test cases and feedback generation

The generation of test cases and feedback relies on the specification element of
the PExIL definition. The Generator tool can be parameterized with a specific number

of test files to generate. Regardless of this parameter, the tool calculates the number
of test cases based on the total number of variables and the number of feedback
messages. In the former, the number of test cases is given by the formula 2n where the
base represents the number of range limits of a variable and the exponent the total
number of variables. Testing the range limits of a variable is justified since their
values are usually not tested by students, thus with a high risk of failure. In the latter,
the tool generates a test case for each feedback message found. The generation will
depend on the successful evaluation of the XPath expression included in the when
attribute of the feedback element. The following example helps to understand how
the Generator calculates the test cases.

 <line>
 <data id=”n1” type=”float” min=”0” max=”1000”/>
 <data id=”n2” type=”float” min=”0” max=”1000”/>
 <data id=”n3” type=”float” min=”0” max=”1000”/>

<feedback when=”$num1>$num2”>Numbers that …</feedba ck>
 </line>

Suppose that the Generator tool is parameterized to generate 10 test cases. Using
the previous example we can estimate the number of test cases and its respective input
values as demonstrated in the Table 4.

Table 4. Specification elements.

Var. T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
n1 0 0 0 0 1000 1000 1000 1000 Min=n2+1 R
n2 0 0 1000 1000 0 0 1000 1000 N2 R
n3 0 1000 0 1000 0 1000 0 1000 R R

The test values are: eight tests to cover the range limits of all variables (23 = 8);

one test to represent the constraint included in the feedback message. Note that this
test case will be executed only if the expression included in the when attribute was not
covered in the previous eight test cases; the remaining tests are generated randomly.

Also note that whoever is creating the programming exercise can statically define
new test cases and use the PExIL definition for validation purposes.

4.1.3 Manifest generation

An IMS CC learning object assembles resources and metadata into a distribution
medium, typically a file archive in ZIP format, with its content described by a
manifest file named imsmanifest.xml in the root level. The main sections of the
manifest are: 1) metadata which includes a description of the package, and 2)
resources which contains a list of references to other resources in the archive and
dependency among them. The metadata section of the IMS CC manifest comprises a
hierarchy of several IEEE LOM elements organized in several categories (e.g.
general, lifecycle, technical, educational). The following table presents a binding of
the PExIL textual elements and the corresponding LOM elements which will be used
by the Generator tool to feed the IMS CC manifest.

Table 5. Binding PExIL to IEEE LOM.

Data Type Schema Element path

Title
LOM lomcc:general/lomcc:title
PExIL exercise/title

Date
LOM lomcc:lifecycle/lomcc:contribute[lom:role=’Author’]/lom:date
PExIL exercise/creation/date

Author
LOM lomcc:lifecycle/lomcc:contribute[lom:role=’Author’]/lom:entity
PExIL exercise/creation/authors/author/v:VCard/v:fn

Purpose
LOM lomcc:general/lomcc:coverage
PExIL exercise/creation/purpose

By defining this set of metadata at the LOM side, eLearning systems continue to

use the metadata included in the IMS CC manifest to search for programming
exercises, rather than using a specialized XML dialect such as PExIL.

4.2 Describing crimsonHex programming exercises

In this subsection we validate PExIL expressiveness by using the PExIL definition to
cover the requirements (e.g. the input/output constraints of the exercise) of a subset of
programming exercises from a learning objects repository.

Fig. 4 Evaluation of PExIL expressiveness.

For the evaluation process we randomly selected 24 programming exercises (1% of
a total of 2393 exercises) from a specialized repository called crimsonHex [8]. We
check manually if the PExIL definition covers all the constraints of the input/output
data. The evaluation results, depicted in the Fig. 4, shows that in most cases (21 –
88%), PExIL was expressive enough to cover the constraints of the exercise test data.
In just one case, we had to make a minor change in the PExIL definition to capture
alternative content models.

Finally, two exercises were not completely covered by the PExIL definition. This
means that using only the standard data types of PExIL we were able to define the
input and output files, and these definitions can be used to validate them. However,
these definitions cannot be used to generate a meaningful set of test data. In these
cases the programming exercise author would have to produce test files by some other
means (either by hand or using a custom made generator). In our opinion, the data

types required be these exercises are comparatively rare and do not justify their
inclusion in the standard library. However, PExIL does not restrict data types and
PexilUtils can be extended with generators for other data types, if this proves
necessary.

5 Conclusions

In this paper we present PEXIL – a XML dialect for authoring LOs containing
programming exercises. Nevertheless, the impact of PExIL is not confined to
authoring since these documents are included in the LO itself and they contain data
that can be used in its life-cycle, to present the exercise description in different
formats, to regenerate test cases or to produce feedback to the student.

For evaluation purposes we validate the PExIL definition by using it as input for
the generation of an IMS CC learning object package through a set of tools and by
using it to capture all the constraints of a set of programming exercises stored in a
learning objects repository called crimsonHex.

In its current status the PExIL schema2 is available for test and download. Our
plans are to support in a near future this definition in the crimsonHex repository. We
are currently finishing the development of the generator engine to produce a LO
compliant with the IMS CC specification. This tool could be used as an IDE plug-in
or through command line based on a valid PExIL instance and integrated in several
learning scenarios where a programming exercise may fit from curricular to
competitive learning.

References

1. Friesen, N.: Interoperability & Learning Objects: Overview of eLearning Standardization".
Interdisciplinary Journal of Knowledge and Learning Objects. 2005.

2. ADL SCORM Overview. URL: http://www.adlnet.gov/Technologies/scorm.
3. IMS-QTI - IMS Question and Test Interoperability. Information Model, Version 1.2.1

Final Specification IMS GLC Inc., URL: http://www.imsglobal.org/question/index.html.
4. Queirós, R. and Leal, J.P.: Defining Programming Problems as Learning Objects. In

ICCEIT, October, Venice, Italy, 2009.
5. IMS-CP – IMS Content Packaging, Information Model, Best Practice and Implementation

Guide, Version 1.1.3 Final Specification IMS Global Learning Consortium Inc., URL:
http://www.imsglobal.org/content/packaging.

6. IMS-Metadata - IMS MetaData. Information Model, Best Practice and Implementation
Guide, Version 1.2.1 Final Specification IMS Global Learning Consortium Inc., URL:
http://www.imsglobal.org/metadata.

7. IMS Common Cartridge Profile, Version 1.0 Final Specification. URL:
http://www.imsglobal.org/cc/ccv1p0/imscc_profilev1p0.html.

8. Leal, J.P., Queirós, R.: CrimsonHex: a Service Oriented Repository of Specialised
Learning Objects. In: ICEIS 2009: 11th International Conference on Enterprise
Information Systems, Milan (2009).

2 Available at http://www.dcc.fc.up.pt/~rqueiros/projects/schemaDoc/examples/pexil/pexil.html

