PEXIL:
Programming Exercises
I nter operability L anguage

Ricardo Queirdsand José Paulo Léal

! CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt
2 CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

Abstract. Several standards appeared in recent yearsrahae the metadata
of learning objects, but they are still insufficig¢n fully describe a specialized
domain. In particular, the programming exercise diom requires
interdependent resources (e.g. test cases, solupimyrams, exercise
description) usually processed by different sewvidga the programming
exercise life-cycle. Moreover, the manual creatidrthese resources is time-
consuming and error-prone leading to what is antaohes to the fast
development of programming exercises of good gualit

This paper focuses on the definition of an XML d@l called PEXxIL
(Programming Exercises Interoperability Languagdéd)e aim of PEXIL is to
consolidate all the data required in the prograngn@rercise life-cycle, from
when it is created to when it is graded, coverifgp ahe resolution, the
evaluation and the feedback. We introduce the XMhe®na used to formalize
the relevant data of the programming exercisedjfele. The validation of this
approach is made through the evaluation of theulrsess and expressiveness
of the PEXIL definition. In the former we presehgettools that consume the
PEXIL definition to automatically generate the spkred resources. In the
latter we use the PEXIL definition to capture &k tconstraints of a set of
programming exercises stored in a learning objegtesitory.

Keywords: eLearning, Learning Objects, Content Packagingroperability.

1 Introduction

The concept of Learning Object (LO) is fundamerfal producing, sharing and
reusing content in eLearning [1]. In essence a k@ icontainer with educational
material and metadata describing it. Since most juSspresent content to students
they contain documents in presentation formats sashHTML and PDF, and
metadata describing these documents using Lear@bgpcts Metadata (LOM),
Sharable Content Object Reference Model (SCORM)of2pther generic metadata

format. When a LO includes exercises to be autaallyi evaluated by an eLearning
system, it must contain a document with a formacdetion for each exercise. The
Question and Tests Interoperability (QTI) [3] ise@@ample of a standard for this kind
of definitions that is supported by several eLeagnsystems. However, QTI was
designed for questions with predefined answers @thot be used for complex
evaluation domains such as the programming exeesigkiation [4]. A programming
exercise requires a collection of files (e.g. teases, solution programs, exercise
descriptions, feedback) and special data (e.g. datigm and execution lines). These
resources are interdependent and processed imediffmoments in the life-cycle of
the programming exercise.

The life cycle comprises several phases: indfeation phase the content author
should have the means to automatically create sufrtlee resources (assets) related
with the programming exercise such as the exedgseription and test cases and the
possibility to package and distribute them in andéad format across all the
compatible systems (e.g. learning management sgstearning objects repositories);
in the selection phase the teacher must be able to search forgagmming exercise
based on its metadata from a repository of learolijgcts and store a reference to it
in a learning management system; in phesentation phase the student must be able
to choose the exercise description in its nativegleage and a proper format (e.qg.
HTML, PDF); in theresolution phase the learner should have the possibilitysto u
test cases to test his attempt to solve the exeasid the possibility to automatically
generate new ones; in tlwaluation phase the evaluation engine should receive
specialized metadata to properly evaluate the d&@nattempt and return
enlightening feedback. All these phases requiret afsinter-dependent resources and
specialized metadata whose manual creation wouldinbe-consuming and error-
prone.

This paper focuses on the definition of an XML ddal called PEXIL
(Programming Exercises Interoperability Languagéhe aim of PEXIL is to
consolidate all the data required in the prograngnarercise life-cycle, from when it
is created to when it is graded, covering alsorés®lution, the evaluation and the
feedback. We introduce the XML Schema used to fmmahe relevant data of the
programming exercise life-cycle. The validationtlis approach is made through the
evaluation of the usefulness and expressivenesteofPEXIL definition. In the
former, we use a PEXIL definition to generate salveesources related to the
programming exercise life-cycle (e.g. exercise dpsons, test cases, feedback files).
In the latter, we check if the PEXIL definition @rg all the constraints of a set of
programming exercises in a repository.

The remainder of this paper is organized as folld®estion 2 traces the evolution
of standards for LO metadata and packaging. Irfdthewing section we present the
PEXIL schema with emphasis on the definitions foe tescription, test cases and
feedback of the programming exercise. Then, weuatalthe definition of PExIL and
conclude with a summary of the main contributiohshis work and a perspective of
future research.

2 Learning object standards

Current LO standards are quite generic and notwatedo specific domains, such as
the definition of programming exercises. The mostely used standard for LO is the
IMS Content Packaging (IMS CP) [5]. This contenthkzeging format uses an XML
manifest file wrapped with other resources insidapdfile. The manifest includes the
IEEE Learning Object Metadata (LOM) standard [6] describe the learning
resources included in the package. However, LOM m@sspecifically designed to
accommodate the requirements of automatic evaluaifoprogramming exercises.
For instance, there is no way to assert the rolpetific resources, such as test cases
or solutions. Fortunately, IMS CP was designed ¢oshraightforward to extend,
meeting the needs of a target user community thrahg creation of application
profiles. A well known eLearning application prefils SCORM that extends IMS CP
with more sophisticated sequencing and Contentsvi8-communication.

Following this extension philosophy, the IMS Glohalarning Consortium (GLC)
upgraded the Question & Test Interoperability (Q3pkcification [3]. QTI describes
a data model for questions and test data and, ¥fension 2, extends the LOM with
its own metadata vocabulary. QTI was designed foestjons with a set of pre-
defined answers, such as multiple choice, multiglgponse, fill-in-the-blanks and
short text questions. It supports also long texdwaers but the specification of their
evaluation is outside the scope of the QTI. AltHolmng text answers could be used
to write the program's source code, there is no teagpecify how it should be
compiled and executed, which test data should bd aad how it should be graded.
For these reasons we consider that QTI is not adedor automatic evaluation of
programming exercises, although it may be suppddedake of compatibility with
some LMS. Recently, IMS GLC proposed the IMS Comm@antridge (CC) [7] that
bundles the previous specifications and its maial g to organize and distribute
digital learning content.

3 PEXIL

In this section we present PEXIL, an XML dialecittaims to consolidate all the data
required in the programming exercise life-cycleisTdefinition is formalized through
the creation of a XML Schema. In the following settions we present the PEXIL
XML Schema organized in three groups of elements:

Textual — elements with general information about the @gerto be presented to
the learner. (e.g. title, date, challenge);

Specification — elements with a set of restrictions that can $eduUfor generating
specialized resources (e.g. test cases, feedback);

Programs — elements with references to programs as exteesdurces (e.g.
solution program, correctors) and metadata abasetihesources (e.g. compilation,
execution line, hints).

3.1 Textual elements

Textual elements contain general information alloétexercise to be presented to the
learner. This type of elements can be used in akydrases of the programming
exercise life-cycle: in the selection phase asasermetadata to aid discoverability
and to facilitate the interoperability among systeife.g. LMS, IDE); in the
presentation phase as content to be present teaheer (e.g. exercise description); in
the resolution phase as skeleton code to be indlirdhe student’s project solution.

The following table presents the textual elementsthe PExIL schema and
identifies the phases where they are involved.

Table1l. Textual elements.

Element Selection PresentatiorResolution Evaluation
title X X

creation/authors/author X X

creation/date X X

creation/purpose X X

challenge X

context X

skeleton X X

The title element represents the title of the programmingrase. This
mandatory element uses thal:lang attribute to specify the human language of the
element’s content. The definition of this elementthe XML Schema has the
maxOccurs attribute set to unbound allowing the same infdiomato be recorded in
multiple languages. Thereation element contains data on the authorship of the
exercise and includes the following sub-elemeadshors with information about
the author(s) of the exercise organized by sewanalor elements (represented as
RDF elementy; date which includes the date of the generation of thereise and
purpose that describes the event for which the exercise avaated or the institution
where the exercise will be used. Témntext element is an optional field used to
contextualize the student with the exercise. Thallenge element is the actual
description of the exercise. Its content modelefiméd as mixed content to enable
character data to appear between XHTML child-eldmefhis XML markup
language will be used to enrich the formatting loé exercises descriptions. The
skeleton element refers to a resource containing code fadbeded in the student’s
project solution.

3.2 Specification elements
The goal of defining programming exercises as Iegrmbjects is to use them in

systems supporting automatic evaluation. In ord@vialuate a programming exercise
the learner must submit a program in source codmtivaluation Engine (EE) that

! Representing vCard Objects in RDF - W3C Member Sulbomis20 January 2010 -
http://www.w3.org/Submission/vcard-rdf/

judges it using predefined test cases - a setmftiand output data. In short, the EE
compiles and runs the program iteratively usingitimut data (standard input) and
checks if the result (standard output) correspdndhe expected output. Based on
these correspondences the EE returns an evaluapont with feedback.

In the PEXIL schema, thimput andoutput top-level elements are used to
describe respectively the input and the outputdasd. These elements include three
sub-elementsdescription , example and specification . The description
element includes a brief description of the inputipoit data. Thexample element
includes a predefined example of the input/outpst tlata file. Both elements comply
with the specification element that describes the structure and confethieaest
data.

Table2. Specification elements.

Element Selection PresentatiorResolution Evaluation
input/specification X X X
output/specification X X X

This definition can be used in several phases efptogramming exercise life-
cycle as depicted in Table 2: by 1) the contenh@uto automatically generate an
input and output test example to be included on éercise description for
presentation purposes; 2) the learner to autontigtiggnerate new test cases to
validate his attempt; 3) the Evaluation Engine\algate a submission using the test
cases.

The specification element (Fig. 1) contains two attributes and tap-level
elements. The attributedine_terminator and value_separator define
respectively the newline and space characters eftélt data. The two top-level
elements aretine which defines a test data row arepeat which defines an
iteration on a set of nested elements. The numbéemtions is controlled by the
value of thecount attribute.

specificationType lineType
lineTerminator string visibility visibility Type
L)
@ valueSeparator string [€] repeat [0.1] repeatType
el | 0.1] lineT: =[] data [0.*7] dataType
[fime 10.1] lineType ”» & dataType
1+ - [€] repeat [0.1] repeatType [e] feedback [0.*] feedbackType -
®id string
e eType
[E] repeatType e ey
@ value string
@ count string &
@ min string
I 0.7] lineT
=] tine 0.1 lineType max string
it 0. it T
o et [0 repestype @ e sting
= [e] data [0.*] dataType
[&] feedback [0.*] feedbackType
£l feedbackType
@ when string
valorization float
@ showAfterNumberAttempts int
Fig. 1 Thespecification element.

Theline element defines a data row. Each row containsoomeore variables. A
variable in the specification model must have ajueiname which is used to refer

values from one or more places in thgecification element. A variable is
represented in the PExXIL schema withdh& element containing the attributes:
 id - defines the name of the variable. To access iablarone must use the
id attribute preceded by the characteto enable the further resolution and
evaluation of XPath expressions while processiegsitecification model;

* type - defines the variable data type (e.g. integestflstring, enum). In the
case of an enumeration the values are presentetkaschild node;

e value - represents the value to be included in the ioptput test file. If
filled the variable acts as a constant. Otherwidee value can be
automatically generated based on a set of conrathetype , min, max or
spec attributes;

* min/max — represents value constraints by defining liraitsthe values. The
semantic of these attributes depends exclusivelythen data type: may
represent the ranges of a value (integer and flolag) minimum/maximum
number of characters (string) or a range of valieebe selected from an
enumeration list;

e spec - regular expression for generating/matching ggiof text, such as
particular characters, words, or patterns of charac

The following XML excerpt shows thspecification elements for the input

and output test data of an exercise. The exertiabletige isgiven three numbers to
verify that the last number is between the first two.

Example of the input test descriptidithe input begins with a single positive integeraoine
by itself indicating the number of the cases follogv This line is followed by a blank line, and
there is also a blank line between two consecinipats. Each line of input contains three float
numbers (numl1, num2 and hum3) ranging values bet@ead 1000. “.

<specification line_terminator="\n" value_separator ="">
<line><data id="numTestCases” type="int" value="3" [><[line>
<line/>

<repeat count="$numTestCases">

<line>

<data id="num1"” type="float” min="0" max="1000"/>
<data id="num2" type="float” min="0" max="1000"/>
<data id="num3” type="float” min="0" max="1000"/>
<feedback when="$num1>$num2">
Numbers that limit the range can be given in descen ding order
</feedback>
</line>
<line/>
</repeat>
</specification>

Example of the output test descriptiohThe output must contain a boolean for each test cas
separated by a blank line between two consecutitguts. “

<specification line_terminator="\n" value_separator ="">
<repeat count="$numTestCases">
<line><data id="result” type="enum” value="1">Tru e False</data></line>
<line/>
</repeat>

</specification>

As said before, the EE is the component responddrldhe assessment of an
attempt to solve a particular programming exergested by the student. The
assessment relies on predefined test cases. Wheaetest case fails atatic
feedback message (e.g. "Wrong Answer", "Time Limit Exceedhd “Execution
Error") associated with the respective test caseyeserated. Beyond the static
feedback of the evaluator, the PEXIL schema indualéeedback element in the
specification element. This element definesignamic feedback message to be
presented to the student based on the evaluatiam &fPath expression included in
the when attribute. This expression can include referentesnput and output
variables or even dependencies between both. Iexipeession is evaluated as true
then the text child node of thieedback element is used as the feedback message.

3.3 Program elements

Program elements contain references to prograncediles as external resources
(e.g. solution program, correctors) and metadatautalthose resources (e.g.
compilation, execution line, hints). These resosir@ee used mostly in the evaluation
phase of the programming exercise life-cycle (Taé)leo allow the EE to produce an
evaluation report of a students’ attempt to solypeagramming exercise.

Table 3. Program elements.

Element Selection PresentatiorResolution Evaluation
solution X X
corrector X
hints X X

A program element is defined with theogramType type. This type is composed
by seven attributesd — an unique identifier for the resourtaguage - identifies
the programming language used to code the resoece JAVA, C, C#, C++,
PASCAL); compiler/executer — defines the name of the compiler/executer;
version — identifies the version of the compilexurce/object - defines the
name of the program source/object fidempilation = — defines a command line to
compile the source code; amdecution — defines a command line to execute the
compiled code;

There are two program elements in the PEXIL schetmasolution and the
corrector elements. Theolution element contains a reference to the program
solution file. Thecorrector element is optional and refers to custom progréras
change the general evaluation pattern for a givencese. The metadata about the
program type resources is consolidated intimgs element aggregating a set of
recommendations for the submission, compilationeretution of exercises.

4 Using PEXIL

In this section we validate the PEXIL definitioncaading to: itsusefulness while
using the PEXIL definition as input of a set of Iloelated to the programming
exercise life-cycle (e.g. generation of a IMS Ca@rteng object package); and its
expressiveness while using the PEXIL definition to capture alethonstraints of a set
of programming exercises in a repository (e.g. deson of crimsonHex
programming exercises).

4.1 GeneratingalMS CC learning object package

In this subsection we validate theefulness of the PEXIL definition by detailing the
generation of an IMS CC LO package based on a WR#ixlL instance. An IMS CC
object is a package standard that assembles eohalatesources and publishes them
as reusable packages in any system that implentigistspecification (e.g. Moodle
LMS).

h
i i
|
| Exercise PExIL !
! Description instance !
i i
|
PExIL !
instance ! references
!
: 1
input output ! IMS CC references !
1
i Manifest !
1
: !
1 e]
|
Solution | references
1
1 Other
1 resources
1 Test Cases (e.g.
]
| & correctors,
1 Feedback image files)
1
1
1
i
1
1

LEARNING OBJECT PACKAGE E

Fig. 2 Learning Object package generation.

A Generator tool (e.g. PexilUtils) uses the PExKfinition to produce a set of
resources related with a programming exercise aghexercise descriptions in
multiple languages or input and output test filk® TO generation is depicted in Fig.
2. The generation of a LO package is straightfodwdthe Generator tool uses as
input a valid PEXIL instance and a program solufimand generates 1) an exercise
description in a given format and language, 2)tao$¢est cases and feedback files
and 3) a valid IMS CC manifest file. Then, a valida step is performed to verify
that the generated tests cases meet the specifigatesented on the PEXIL instance
and the manifest complies with the IMS CC scheniaally, all these files are
wrapped up in a ZIP file and deployed in a Learnfigjects Repository. In the
following sub-subsections we present with moreitiftase three generations.

4.1.1 Exercisedescription generation

For the generation of an exercise description (B)git is important to acquire the
format and the human language of the exercise ig¢iser. The former is given by the
Generator tool and the latter is obtained fromttial number of occurrences of the
xml:lang attribute in theitle element of the PEXIL instance.

The Generator tool receives as input a valid PEx$tance and a respective XSLT
2.0 file and uses the Saxon XSLT 2.0 processor aweabwith thexsl:result-
document element to generate a set of .FO files corresmgndo the human
languages values founded in thal:lang attribute. The following code shows an
excerpt of thePdf.xsl file. This stylesheet generates the .FO files haze the
textual elements of a PEXIL instance:

<xsl:template match="pexil:title">

<xsl:variable name="uri" select="concat('desc',@ xml:lang,".fo")"/>
< xsl:result-docunent href="resources/{$uri}">
<fo:root xmins:fo="http://www.w3.0rg/1999/XSL/For mat">
<l—apply templates over the textual elements -->
</fo:root>

</ xsl:result-docunent >
</xsl:template>

In the next step, the .FO files are used as inptihé Apache FOP formatter — an
open-source and partial implementation of the W3GLXO 1.0 standard -
generating for each .FO file the corresponding Fil@F

PExIL

. Statement_PT.fo
instance

Statement_PT.pdf

Saxon Apache FOP

Statement_EN.fo Statement_EN.pdf

[XSLT 2.0 processor) |

(XSL-FO processor) i

Pdf.xsl

Il
I

! FOLANGUAGE FILES |

PDF LANGUAGE FILES 3

__

Fig. 3 Generation of the exercise descriptions.

The use of the PEXIL definition to generate exeraiescriptions does not end
here since the PEXIL definition is included in @ itself making it possible, at any
time of the LO life-cycle, to regenerate the exagcdescription in other different
formats.

The description also includes a description anéxample of a test case. In the
case of the absence of tihput/description andinput/example the Generator
relies on thespecification element to generate the test data and includethe
exercise description.

4.1.2 Test casesand feedback generation

The generation of test cases and feedback religkempecification element of
the PEXIL definition. The Generator tool can bespaeterized with a specific number

of test files to generate. Regardless of this patamthe tool calculates the number
of test cases based on the total number of vadahiel the number of feedback
messages. In the former, the number of test casgigen by the formula"2vhere the
base represents the number of range limits of mblar and the exponent the total
number of variables. Testing the range limits ofamiable is justified since their
values are usually not tested by students, thus avhigh risk of failure. In the latter,
the tool generates a test case for each feedbas&ame found. The generation will
depend on the successful evaluation of the XPaginession included in thehen
attribute of thefeedback element. The following example helps to understhog
the Generator calculates the test cases.

<line>
<data id="n1" type="float” min="0" max="1000"/>
<data id="n2" type="float” min="0" max="1000"/>
<data id="n3" type="float” min="0" max="1000"/>
<feedback when="$num1>$num2”>Numbers that ...</feedba ck>
</line>

Suppose that the Generator tool is parameterizegtherate 10 test cases. Using
the previous example we can estimate the numbigsbtases and its respective input
values as demonstrated in the Table 4.

Table4. Specification elements.

Var. Tl T2 T3 T4 T5 T6 T7 T8 T10
nl 0 0 0 0 1000 1000 1000 1000 R
n2 0 0 1000 1000 O 0 1000 1000 R
n3 0O 1000 O 1000 0 1000 0 1000 R

The test values are: eight tests to cover the réimijes of all variables (2= 8);
one test to represent the constraint included éenféledback message. Note that this
test case will be executed only if the expressimiuided in thevhen attribute was not
covered in the previous eight test cases; the r@natests are generated randomly.

Also note that whoever is creating the programng@rgrcise can statically define
new test cases and use the PEXIL definition faidasibn purposes.

4.1.3 Manifest generation

An IMS CC learning object assembles resources aathdata into a distribution
medium, typically a file archive in ZIP format, Witits content described by a
manifest file namedmsmanifest.xml in the root level. The main sections of the
manifest are: 1)metadata which includes a description of the package, ahd 2
resources which contains a list of references to other resesi in the archive and
dependency among them. Timetadata section of the IMS CC manifest comprises a
hierarchy of several IEEE LOM elements organizedseveral categories (e.g.
general, lifecycle, technical, educational). Théofeing table presents a binding of
the PEXIL textual elements and the correspondinyllélements which will be used
by the Generator tool to feed the IMS CC manifest.

Table5. Binding PEXIL to IEEE LOM.

Data Type Schema Element path

Title LOM lomcc:general/lomcc:title
PEXIL exerciseftitle
LOM lomcc:lifecycle/lomcc:contribute[lom:role="Autir’)/lom:date
Date ; .
PEXIL exercise/creation/date
Author LOM lomcc:lifecycle/lomcc:contribute[lom:role="Autir’}/lom:entity
PEXIL exercise/creation/authors/author/v:VCard/v:fn
LOM lomcc:general/lomcc:coverage
Purpose

PEXIL exercise/creation/purpose

By defining this set of metadata at the LOM sidega@ning systems continue to
use the metadata included in the IMS CC manifessdarch for programming
exercises, rather than using a specialized XMLedisduch as PEXIL.

4.2 Describing crimsonHex programming exer cises

In this subsection we validate PEXIL expressivenfwsasing the PEXIL definition to
cover the requirements (e.g. the input/output cairgs of the exercise) of a subset of
programming exercises from a learning objects riémys

Evaluation of PExIL expressiveness

M Cover M Cover (with minor changes) Cannot cover

4%

X

Fig. 4 Evaluation of PEXIL expressiveness.

For the evaluation process we randomly selectegkr@gramming exercises (1% of
a total of 2393 exercises) from a specialized rigpgscalled crimsonHex [8]. We
check manually if the PEXIL definition covers allet constraints of the input/output
data. The evaluation results, depicted in the EFjgshows that in most cases (21 —
88%), PEXIL was expressive enough to cover thetcaings of the exercise test data.
In just one case, we had to make a minor changkeirPEXxIL definition to capture
alternative content models.

Finally, two exercises were not completely covelbbgdhe PEXIL definition. This
means that using only the standard data types g&fLPEe were able to define the
input and output files, and these definitions cenubed to validate them. However,
these definitions cannot be used to generate aingfahset of test data. In these
cases the programming exercise author would hapeottuce test files by some other
means (either by hand or using a custom made generln our opinion, the data

types required be these exercises are comparatieety and do not justify their
inclusion in the standard library. However, PExlbeg not restrict data types and
PexilUtils can be extended with generators for otbata types, if this proves
necessary.

5 Conclusions

In this paper we present PEXIL — a XML dialect faunthoring LOs containing
programming exercises. Nevertheless, the impactPBKIL is not confined to
authoring since these documents are included in.@étself and they contain data
that can be used in its life-cycle, to present éxercise description in different
formats, to regenerate test cases or to produdbdek to the student.

For evaluation purposes we validate the PEXIL dk&fim by using it as input for
the generation of an IMS CC learning object packiigeugh a set of tools and by
using it to capture all the constraints of a sepafgramming exercises stored in a
learning objects repository called crimsonHex.

In its current status the PExIL schéemnis available for test and download. Our
plans are to support in a near future this deéniiin the crimsonHex repository. We
are currently finishing the development of the gat@ engine to produce a LO
compliant with the IMS CC specification. This tamuld be used as an IDE plug-in
or through command line based on a valid PExILains¢ and integrated in several
learning scenarios where a programming exercise fitayfrom curricular to
competitive learning.

References

1. Friesen, N.: Interoperability & Learning Objectsiédview of eLearning Standardization”.
Interdisciplinary Journal of Knowledge and Learn{igjects. 2005.

2. ADL SCORM Overview. URL: http://www.adInet.gov/TecHagies/scorm.

3. IMS-QTI - IMS Question and Test Interoperabilitpfdrmation Model, Version 1.2.1
Final Specification IMS GLC Inc., URL: http://wwwrisglobal.org/question/index.html.

4. Queirés, R. and Leal, J.P.: Defining ProgrammingbRmms as Learning Objects. In
ICCEIT, October, Venice, Italy, 2009.

5. IMS-CP — IMS Content Packaging, Information ModelsBRractice and Implementation
Guide, Version 1.1.3 Final Specification IMS Glolaarning Consortium Inc., URL:
http://www.imsglobal.org/content/packaging.

6. IMS-Metadata - IMS MetaData. Information Model, Bé&4tactice and Implementation
Guide, Version 1.2.1 Final Specification IMS GloHdaarning Consortium Inc., URL:
http://www.imsglobal.org/metadata.

7. IMS Common Cartridge Profile, Version 1.0 Final Sfieation. URL:
http://www.imsglobal.org/cc/ccv1pO/imscc_profilev@ptml.

8. Leal, J.P., Queirés, R.: CrimsonHex: a Service OegnRepository of Specialised
Learning Objects. In: ICEIS 2009: 11th InternaibnConference on Enterprise
Information Systems, Milan (2009).

2 Available at http://iwww.dcc.fc.up.pt/~rqueiros/jats/schemaDoc/examples/pexil/pexil.html

