An Enginefor Generating XSLT from Examples

José Paulo Lehhnd Ricardo Queirds

1CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt
2CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. XSLT is a powerful and widely used language fansforming XML
documents. However its power and complexity canveewhelming for novice
or infrequent users, many of which simply give upusing this language. On
the other hand, many XSLT programs of practical areesimple enough to be
automatically inferred from examples of source dadyet documents. An
inferred XSLT program is seldom adequate for préidncusage but can be
used as a skeleton of the final program, or at leascaffolding in the process
of coding it. It should be noted that the authors mbt claim that XSLT
programs, in general, can be inferred from examplese aim of Vishnu - the
XSLT generator engine described in this paperte groduce XSLT programs
for processing documents similar to the given eXxammnd with enough
readability to be easily understood by a programmar familiar with the
language. The architecture of Vishnu is composed lgyaphical editor and a
programming engine. In this paper we focus on ttlitoeas a GWT web
application where the programmer loads and editsiishent examples and pairs
their content using graphical primitives. The pagming engine receives the
data collected by the editor and produces an XSbgnam.

Keywords: XSLT, Transformations, Refactoring.

1 Introduction

Generating a XSLT program from a pair of source tardet XML documents is
straightforward. A transformation with a single f@ate containing the target
document solves this requirement, but is valid datythe actual example. Using the
information from the source document we can abstthis transformation. The
simplest way is to assume that common strings ith ldwcuments correspond to
values that must be copied between them. If we i@ipl identify these
correspondences we can have more control over wétichgs are copied and to
which positions. However, a transformation createthis fashion is still too specific
to the examples and cannot process a similar salamement with a slightly different
structure. For instance, if the source documenrg Bgrepts a repeated elemerand
the example haa repetitions of the element then the generated program would
accept exactly: repetitions of that element.

Although too specific, a simple XSLT program canused as the starting point
for generating a sequence of programs that are gereral and are better structured,
ending in a program with a quality similar to ormled by a human programmer. To
refine an XSLT program we can use second order X@ansformations, i.e. XSLT
transformations having XSLT transformations bothsaarce and target documents.
In this approach the role of an XSLT generationieags to receive source and target
examples, and an optional mapping between thegstrof the two documents,
generate an initial program and control the refiaemprocess towards the final
XSLT program.

The aim of this paper is the presentation of Vishkhian XSLT engine for
generating readable XSLT programs from examplesoafce and target documents.
Readability is an essential feature of the gendrptegrams so that they can be easily
understood by a programmer not familiar with thaglaage. The architecture of
Vishnu is composed by a graphical editor and anamging engine. The former acts
as a client where the programmer loads and editardent examples and pair their
content using graphical primitives. The latter rees the data collected by the editor
and produces an XSLT program.

There are several use cases for an XSLT generatigine with these features.
The Vishnu generator was designed to interact wittomponent that provides text
editing functions for the end-user or programmecliant of Vishnu can be a plug-in
of an Integrated Development Environment (IDE) sashEclipse or NetBeans. In
this case the IDE provides several XML tools (higiling, validation, XSLT
execution) and the plug-in is responsible for higdthe content of text buffers and
editing positions with the engine and retrieving tfenerated XSLT program. Vishnu
can also be used as the back-end of a web envimdnimeXSLT programming. In
this case the web front-end is responsible forirglibperations and invokes engine
functions for setting the example documents and pingis, and retrieving the
generated program. The generator can also be ssed@mmand line tool as part of a
pipeline for generating and consuming XSLT prograimghis last case the generator
processes example documents in the local file systenaking mostly use of default
mappings.

The rest of the paper is organized as follows. i8e@ presents work related to
XSLT editing and generation. In the following sectiwe present the inner structure
of the XSLT generator that is composed of threennt@mponents: the context, the
generator and the refiner. Then, we evaluate tlehili XSLT generation engine
from three complementary and interrelated appragctoeusing: the consistency of
generation and refinement process; the coveragéhefexisting rules; and the
adequacy of the Vishnu API to XSLT editing enviremts. Finally, we conclude
with a summary of the main contributions of thisrkvand a perspective of future
research.

2 Related Work

The first step to start editing XSLT files is chowsthe editor that most suits one’s
programming environment. There are tools integratecKML IDEs [1, 2], tools

integrated in general purpose IDEs as plug-ingt[J, 6, 7, 8] and even standalone
applications [9, 10, 11]. Despite the existence s#veral environments for
programming in XSLT, usually integrated into IDEBey do not use visual editing
for programming. Moreover, as far as we know, naidethe graphical XSLT
programming environment generates programs fronmeles as source and target
documents.

Hori and Ono [12, 13] use an example-based anpatatol which relies on a
target document editor. The main concepts of thgjproach are depicted in Figure 1.
An annotator can edit a target document (e.g., &MH page) by using the
capabilities of a WYSIWYG authoring tool (1). Thditing actions are recorded into
an operation history (2). When the editing is five@d, the annotation generator creates
transformational annotation for the document custation (3), which can be further
used by XSLT processor to replicate the transfaonarom the initial document to
the customized document.

Target L= Customized
document N Document document
Editor J
T

AN

' i
annotate ! [N -, s
1 Vi

Transformational Annotation Operation
annotation Generator history

Example-based annotation generation

Core components

Fig. 1 History based document transformation.

Spinks [14] presents an annotation-based pagetatjpgngine providing a way of
performing Web resources adaptation. At contenivelgl time, the page-clipping
engine modifies the original document based onth&) page-clipping annotations
previously generated in a WYSIWYG authoring tooda2) the user-agent HTTP
header of the client device. The page-clipping &aimn language uses tkeep and
remove elements in the annotation descriptions to indicettether the content being
processed should be preserved or removed.

3 TheVishnu engine

The Vishnu engine [15] concentrates all the tasédated with the automatic
generation of an XSLT program from examples usiagpad order transformations.
Nevertheless, it was designed to interact withientl A client of the Vishnu engine
concentrates all the tasks related with user iotEna where the programmer loads
and edits document examples and pairs their conteng) graphical primitives.

The communication between these two componentsgslated by the Vishnu
API. Hence, the architecture of the Vishnu appitrais composed by &raphical
Editor and aProgramming Engine as depicted in Figure 2.

CLIENT

Source

A
mappings | | —
W

XSLT
Program

W]
Generator |—3 ‘ X5LT#1 H X5LT#2 H XSLT#3 ‘

Refiner

Target

Context

Fig. 2 Thearchitecture of Vishnu.

The former acts as a client where the programmaddoand edits document
examples and pair their content using graphicamitiies. The design and
implementation of a client for the Vishnu enginepresented in the next section to
validate the adequacy of the Vishnu API to XSLTtiedi environments.

The latter receives the data collected by the editd produces an XSLT program.
The engine relies on the Vishnu API that includesthuds for setting the source and
target documents as streams of characters, settngpping between the strings of
these documents using editing locations (offsets)l retrieving the resulting XSLT
program. The Vishnu API includes also functionsgapporting graphical interaction
in the editor and for configuring the generationgass. The functions for selecting
strings in the XML documents (text and attributed@®) from editing locations are
example functions for supporting graphical inteiact The Vishnu facade class
implements this APl and hides the inner structufehe XSLT generator that is
composed of three main components:dbrtext, thegenerator and the efiner.

3.1 Context

The central piece of the engine is the generatimtext. The context holds the source
and target documents and the mapping between tbeatvd is responsible for
converting between the external textual represiemtgdrovided by the client and the
internal XML representation required by the Vishiwparticular this component is
responsible for converting document position inf@a¥h expressions and vice-versa.

The conversion is managed by the PathLocator clBlsss. class converts text
locations (offsets) intddPaths expressions and vice-versa. AiPath is an absolute
XPath expression which selects either single textsattribute nodes in an XML
document. The general form of EDPath is:

nipY..n "p "ext(
nipY...n "p"V@attr

It should be noted that locating nodes from ushmgjrtediting positions and the
reverse are not operations supported by the ARIgrficessing XML documents.

The Context component is also responsible for teeeration of the mapping
between the source and the target documents. Ihtamas an XML map file

identifying the correspondences between both. Tidesstifications can be inferred
automatically or manually set through the EditdneTollowing XML excerpt shows
an example of a source, target and a list of geirsPath expressions relating them
merged in a file calledishnu.xml.

<vishnu xmIns="http://www.dcc.fc.up.pt/vishnu">
<l—Source document -->
<source>
<rss version="2.0" xmins="http://backend.userland.c om/rss2"/>
<channel>
<title>News</title>
<link>...</link>
<description>...</description>
<item>

</item>
</channel>
</rss>
</source>
<l—target document -->
<target>
<html xmIns="http://www.w3.0rg/1999/xhtml">
<head>
<title>News</title>
</head>
<body>
<h1>News</h1>

</body>
</html>
</target>
<l—pairing document-->
<pairings>
<pairing
source = "/rss[1])/channel[1]/title[1])/text()"
target = "/html[1]/head[1]/title[1])/text()"/>
<pairing
source = "/rss[1])/channel[1]/title[1]/text()"
target = "/htmli[1])/body[1]/h1[1]/text()"/>
</pairings>
</vishnu>

This file will serve as input for the Generator qmment to produce a XSLT program.

3.2 Generation

The purpose of thgenerator is to produce an initial XSLT program from the sm
and target, using a string mapping. If no mappigrovided by the client then it
uses a default mapping inferred by the context aomapt, linking text or attribute
nodes in both documents with equal character srifidie generator component

receives as input the paring file and, using a sg¢arder transformation, produces a
specific XSLT program. As an illustration we prefsthre output of this second order
stylesheet based on the example included in theque subsection.

<xsl:template match="/">
<html>
<head>
<title>
<xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/t ext()"/>
</title>
</head>
<body>
<hl>
<xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/t ext()"/>
</h1>

<)50dy>
</html>
</xsl:template>

The initial XSLT program has a single template edgmihg an abstraction of the target
document. To abstract the target document the ttgrggitions in the mapping are
replaced withxsl:value-of instructions referring corresponding source posgiin
the mapping. As explained previously, with this dewf abstraction the initial
transformation is only able to process a documéitit the exact same structure of the
source document provided as input. To be of anytima use this program is
submitted to a refinement process.

3.3 Refinement

Therefinement process produces a sequence of XSLT progm@nstarting with the
initial programp, by applyingR = {r;} set of second order XSLT transformations
called refinements. Refinements can be divideavim¢ategoriessimplifications and
gener alizations.

Let S, and T, be respectively the example source and targetmeots. All
refinements; have the following invarianip,, (Sy) = Ty = 1;(p,) (Sy) = T, that is,
if a program maps the example source documentetexample target document then
the refined program has the same property. A sfioation refinement is even more
restrictive and any documestthat is converted by progra$g is equally converted
by its refinementi.e.VS, T p,(S) =T = r,(p,)(S) = T. Simplifications are “safe”
refinements but fail to introduce the level of abstion needed for a transformation
to be effective, hence this stronger requiremerglaxed for abstractions.

An example of a generalization is the refinemeiat timfolds a single template
into a collection of smaller templates. Candidate®p elements in the new template
are elements whose XPath expressionssinalue-of share a common and non-
trivial prefix that can be used match of the nempéate. As it introduces new

templates with relative expressions in the matdhbate this refinement is not a
simplification. The new template may match with esdvith the same tag occurring
in different points in a different source documstrticture. To minimize the chance
of unwanted matches this refinement associates dentm the new template that is
used also by thesl:apply-template instruction that invokes it. An example of a
simplification is the refinement that removes redfum modes frontsl:template
and xsl:apply-template instructions. This refinement selects templateth won
empty modes that cannot be matched by other teegpldhat mode is removed both
from the selected template and sdl:apply-template referring it. The current
Vishnu implementation includes over 10 refinements.

As an illustration we present the final output lo¢ refinement process based on
the example included in the previous subsection.

<xsl:stylesheet version="1.0" ...>

<xsl:template match=" rss2: channel ">
<xhtml:html>

<xsl:apply-templates mode=" xht m : head" select=" rss2:title"/>
<xhtml:body>
< xsl:apply-templates mode=" xht m : h1" select=" rss2:title"/>
<xhtml:ol>
<xsl:apply-templates select="rss2:itent/>
</xhtml:ol>

</xhtml:body>
</xhtml:htmI>
</ xsl:template >

<xsl:template match=" rss2:iteni>
<xhtml:li>
<xhtml:a href="{rss2:link}">
< xsl:value-of select=" rss2:title"/>
</xhtml:a> -
< xsl:apply-templates select=" rss2: description"/>
</xhtml:li>
</ xsl:template >

<xsl:template match=" rss2: description">
<xhtml:ii>< xsl:value-of select="."/></xhtml:i>
</ xsl:template >

<xsl:template match=" rss2:title"mode=" xhtm :hl">
<xhtml:hl1>< xsl:value-of select="."/></xhtml:h1>
</ xsl:template >

<xsl:template match=" rss2:title"mode=" xhtmnl :head">
<xhtml:head>

<xhtml:title>< xsl:value-of select="."/></xhtml:title>
</xhtml:head>
</ xsl:template >

</ xsl:stylesheet >

The Vishnu engine supports different refinemesttategies to control the
application of the refinementetR . A refinement strategy indicates the next
refinement to use is informed if the suggestednesfient has changed the XSLT
program and decides when the refinement proces®rnplete. There are several
refinement strategies that can be set using thénisAPI. The most effective
strategies implemented so far apply the refinemants predefined order, repeating
the application of refinement while it is effective

4 Validation

The Vishnu engine was validated in three compleargrand interrelated approaches,
focusing the

consistency of the generation and refinement process;
cover age of the existing rules;
adequacy of the Vishnu API to XSLT editing environments.

By default Vishnu validates theonsistency of the generation and refinement
process by checking that each intermediate tramsftion converts the example
source document into the examples target docurifetttis invariant is not satisfied
then the refinement process is aborted and an isrreported to the client.

To validate thecoverage of the existing rules different scenarios wereated.
Each scenario includes source and target docunmehtaamapping, as well as the
expected program.

source.xml
(RS55 source)

Context

target.xml
[HTML target) i
1

vishnuml !

vishnuml
(mapping language)

generated.xsl
{initial ¥5LT program)

Programming Engine

final.xsl
(final X5LT program)

RSS2HTML
Scenario

Fig. 3 The RSS to HTML scenario.

The manipulation of a scenario in Vishnu is madéhgyScenario class. This class
provides a set of methods for testing the Vishngiren Typical uses involve a set of
scenarios where for each scenario the generatgditooft the engine is matched with
the resources enclosed on the scenario itself. direent scenarios include the
conversion of: 1) RSS documents to HTML; 2) Mathdoah expressions in MathML
to presentation MathML and 3) Meta-data in LOM (tréag Object Metadata) to
RDF. The Figure 3 shows the inner workflow used t&sting the RSS to HTML
scenario. A mixed-content scenario has not beeredhdgbt since the context
component is not supporting indexes in text nodes.

To validate theadequacy of the Vishnu APl we developed a simple web
environment for XSLT programming based on the Geddfleb Toolkit (GWT), an
open source framework for the rapid developmenAdAX applications in Java.
When the application is deployed, the GWT crossqutentranslates Java classes of
the GUI to JavaScript files and guarantees cross#er portability. The specialized
controls are provided by SmartGWT, a GWT API's $mnartClient, a Rich Internet
Application (RIA) system.

The graphical interface of the front-end is compolsg two panels: Mapping and
Program. In théM apping panel the "programmer” uses graphical tools to map gsrin
in two XML documents corresponding to a source anrget documents for the
intended XSLT transformation. In therogram panel the user obtains the resulting
XSLT and can continue editing it.

Figure 4 shows the RSS-to-HTML scenario being umedhe Vishnu client GUI
with its main components labelled with numeralse Mapping panel includes two
side-by-side windows for editing respectively (hletsource and (2) the target
documents. These documents may be created eitimarsitratch or based in scenarios
predefined in the Engine. Regardless of the chitieecorrespondences between both
can be set (3nanually through the Editor ainferred by the Engine.

When setting correspondences manually the prograrsrable to pair contents
on these windows by selecting and highlighting wittor texts where the origin is on
the source document and the destination is on d&nget window. Origin and
destination must be character data, either tex¢sod attribute values.

When automatic correspondence is used Vishnu filEntpairs based on: text
matches (text or attribute nodes) or text aggregatin the first mode strings
occurring on text and attribute type nodes on theee document are searched on the
text and attribute nodes of the target document anly exact matches are
considered. In the second mode Vishnu aggregatiegsin the source document to
create a string in the target document. After aatiion pairing, the inferred
correspondences are presented in the GUI with gofoapping the two XML
documents. The user can then manually reconstraqgbairing of string between both
documents.

—

BEVISHNU [l

Gle | & meps127.0.01:8888 Vishruweb. Mmitgwt.codesvr=127.0.0.1-5997 - | o Pl & B B

e = |Edk ~ | Config ¥ |Help

S GE D e

Fa
backend userland comvrss2™>

A Infe Map & Reset ¥ Genente H

Fig. 4 Vishnu client front-end.

In complement to creating the source and targetimeats from scratch, the us
can fill in automatically the two rich text editdoy using scenarios (4Each scenari
includes source and target document and a mapaingell a the expected prograr

5 Conclusions

In this paper we preselVishnu -an XSLT generator engine that aims to proc
XSLT programs for processing documents similarhte given examples and wi
enough readability to be easily understood by agamme not familiar with the
language.

The project that lead to the development of thénkiiscan follow different path:
the engine can be used in other XSLT programmingremments; the API of th
engine can extended with new functions; and tfinement pocess can be extend
with new refinements. First of all, the Vishnu ARlas validated with a we
environment but the appropriate place to applyatult be an IDE with support f
XML. Eclipse is particularly suited for this purpobecause it is not a XL IDE but
rather an IDE for programming in general with tofds handling XML, including
XSLT programming. Secondly, the Vishnu engine wasighed as a tool fc
generating simple XSLT programs from examples ardle extended for other us
The refinenent process was designed to improve the qualitya afaive XSLT
program automatically generated from examples launt lbe used to improve a
XSLT program. In fact, an interesting side effetthis research is the definition

sort of “canonical XSLT” in terms of second ordeBIXT transformations. In practical
terms we plan to expand the Vishnu API to enabdeuse of the refinement process
on a given XSLT program, rather than only on thgererated from examples. This
feature may be used in the XSLT programming enviremnt to refractor any XSLT
programs, including the generated program aftevais edited by the programmer.
Finally, Vishnu is an expandable system in the se¢hat refinements and refinement
strategies can be easily integrated. We expectréate new refinements both to
improve the quality of automatically generated X§bifbgrams and to introduce new
forms of automatically refactoring existing XSLTograms.

References

Stylus Studio - http://www.stylusstudio.com/

Altova StyleVision - http://www.altova.com/styleids.html

Tiger XSLT Mapper - http://www.axizon.com/

XSL Tools - http://marketplace.eclipse.org/contesittools

oXygen - http://www.oxygenxml.com/eclipse_plugimtht

XMLSpy Eclipse editor - http://www.altova.com/xmigpclipse-xml-editor.html

OrangevoltXSLT - http://eclipsexslt.sourceforge/net

X-Assist - http://sourceforge.net/projects/x-agsist

Dexter-xsl - http://code.google.com/p/dexter-xsl/

0. VXT: A Visual Approach to XML Transformations. Emmael Pietriga, Jean-Yves Vion-
Dury and Vincent Quint. Proceedings of the 2001 ASnposium on Document
engineering, USA

11. FOA. Formatting Objects Authoring tool - http://feaurceforge.net

12. Hori, M., Ono, K., Abe, M. and Koyanagi, T.: Gentimg transformational annotation for
Web document adaptation: Tool support and empirealuation. Journal of Web
Semantics, 2(1), pp. 1-18 (2004-12).

13. Ono, K. et al., “XSLT Stylesheet Generation by Epénwith WYSIWYG Editing,”
Proceedings of the Symposium on Applications onititernet (SAINT 2002), 2002, pp.
150-159.

14. Spinks, R., Topol, B., Seekamp, C., and Ims, S.: D@ clipping with annotation.

IBM developerWorks, http://www.ibm.com/developerwsfiikm/library/ibmclip/ (2001).

15. Leal, J.P. and Queirés, R.: Visual Programming oE X&om Examples - 82 Conferéncia

- XML: AplicacBes e Tecnologias Associadas, VilaGnde, Portugal, June, 2010.

POoNo~LODE

