
A Web Application for Mathematics Education�

Ana Paula Tomás1,2, José Paulo Leal1,2, and Marcos Aurélio Domingues2

1 Departamento de Ciência de Computadores, Faculdade de Ciências,
Universidade do Porto, Portugal

{apt,zp}@dcc.fc.up.pt
2 Laboratório de Inteligência Artificial e Ciência de Computadores,

Universidade do Porto, Portugal
marcos@liacc.up.pt

Abstract. AGILMAT is a web application designed to help students
learn Mathematics, with focus on high-school algebra and calculus drills.
A modular and extensible architecture and a wizard-based configuration
interface decoupled from the system core are major design features of
AGILMAT. The drill expressions are specified by grammars and cons-
traints imposed by default profiles and user options, so that AGILMAT
may support distinct learning levels and stages. The core system uses
symbolic manipulation and automated reasoning to provide correct an-
swers for the drills. The paper shows how AGILMAT may be used to
create and customize drills automatically.

1 Introduction

Improving proficiency in mathematics stands at the top of educational priorities
in Portugal, as well as in many countries. Although it is a fact that some students
lack mathematical skills, the main reason for the lack of success in mathematics
is that too often students memorize how to work out a specific drill but do
not grasp the concepts underlying the solution steps. Some students even prefer
quick practical rules with no mathematical basis, such as “to see if |x| > b should
be rewritten as x < −b∨x > b or as x < −b∧x > b, rotate > by 90◦ clockwise”.

Over the last three decades applications of computers in mathematics edu-
cation as a supplement to regular class or as a primary means of instruction
became more and more widespread [1,2,11]. The fast growth of Internet has
also fostered a significant breakthrough in computer assisted learning. Sophisti-
cated web-based learning environments are being developed also for mathematics
education, some offering authoring tools for creating courseware, assignments
and exams, some being used for training, assessment and contests [5,8,15,18].
Nevertheless, designing courseware material for e-learning is still quite time-
consuming, even when instructors may count on e-learning authoring tools [5,15].
Advances in computer technology shall therefore be exploited to develop really
re-usable and customizable contents, for personalized e-learning.
� Partially supported by AGILMAT (POSI/CHS/48565/2002), funded by Fundação

para a Ciência e Tecnologia, under POSI, co-funded by EU/FEDER.

H. Leung et al. (Eds.): ICWL 2007, LNCS 4823, pp. 380–391, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Web Application for Mathematics Education 381

AGILMAT project (www.ncc.up.pt/AGILMAT/) aims to develop tools to au-
tomatically create and solve mathematics drills, for computer aided training
or assessment. Drill and practice, together with exposition, are still the main
modes of instruction in Mathematics. Nevertheless, very often drills created by
online exercise systems lack pedagogical interest, as they tend to be too hard-
wired and just correspond to randomly generated instances of the same problem
template [18].

In contrast to the most usual practice, the analysis of algebraic procedures
that students should learn and apply in a given curriculum plays a central role
in AGILMAT. In particular, for the abstraction of problem templates and their
formal description, we try to understand how these algorithms condition the
drills that may be created and solved automatically [16]. The expressions that
arise in the exercises are specified by constrained grammars and refined by de-
fault profiles and user options.

AGILMAT supports different initial settings by parametrizing the interface,
generator and solver. The user is given the possibility to further refine some
of these parameters so as to customize the exercises. The released prototype1

allows users to create hundreds of examples and their one-line solutions, about
univariate functions. Drills currently supported are directed to high school stu-
dents and mathematics teachers (grade levels 10 to 12). We may explore the
advantages of this tool as a means for learning fundamental notions. For ex-
ample, by making students understand and justify why the one-line solutions
produced by the system are correct. The possibility of using AGILMAT for this
purpose was validated in informal demos of the system to high-school students
and teachers.

AGILMAT implementation integrates different technologies and programming
languages. Pursuing the line of [16,17], the core system is implemented in a
Prolog-based constraint logic programming language [10,13,14] to support con-
straints on the exercises.

The framework that supports AGILMAT’s interface is described in [3,6]. It is
loosely inspired in the model-view-controller (MVC) pattern and implemented
on a Java servlet container (J2EE Web Application, using the Apache Tomcat
Servlet Container, version 5.5). A main feature is the fact that it can be extended
without requiring code programming. The hot spots of such framework are XML
configuration files to define the interface data, how this data is mapped into the
system’s commands, and how commands output and the interaction state is
mapped into web formatting languages. With this approach the web interface
is kept separated from the system it controls, it is easy to define and modify,
and is able to capture enough domain knowledge to be a real advantage for the
novice or sporadic user.

The rest of the paper is structured as follows. In Section 2, we show how
AGILMAT may be used to create and customize drills automatically. Section 3
presents its architecture in brief and some implementation details. In Section 4,
we address ongoing work that aims at extending the prototype and discuss some

1 The released version of AGILMAT is available at www.ncc.up.pt:8080/Agilmat.



382 A.P. Tomás, J.P. Leal, and M.A. Domingues

of the theoretical problems inherent to mathematical knowledge management
that we have to circumvent.

2 Generating Exercises

AGILMAT’s front-end is a web application that collects a set of options that will
control the generation of exercises. Figure 1 presents AGILMAT initial interface
where the user can generate a set of exercises defining only a minimal set of
options.

Fig. 1. Screen of the main interface of AGILMAT

The location of these options in the users interface is highlighted in Figure 1.
Each one is numbered and its purpose is described below.

Option 1 - Defines a profile of exercises that will be generated, set to “Grade
Level - 11” in the example. This makes the system initialize the range of each
parameter of AGILMAT’s back-end with suitable default values (defined by
such profile). These values may correspond not only to grade levels but also
to specific topics of the curricula. The advantage of this option is to allow
novice users to generate exercises for their particular needs without having
to set a large number of parameters.

Option 2 - Defines the maximum number of expressions that will be generated
for the exercises, set to “30”, in the figure.

Option 3 - Defines the types of exercises that will be generated. The user can
use this option to choose the types of exercises that he/she does want, such
as “Compute the domain for the given expressions”, “Study the sign varia-
tion of given expressions” and “Solve (in)equations”. Exercise sheets may



A Web Application for Mathematics Education 383

contain several different types of exercises. We set the option to “Compute
the domain for the given expressions” and “Study the sign variation of given
expressions”.

Option 4 - Turns on and off the cache system. On “Cache on” the system gets
exercises from the ones cached, if there are some. Otherwise, AGILMAT will
generate fresh exercises.

Option 5 - Finally, if we press “Generate exercises”, some exercises will be
displayed in the bottom of the screen, as we show in Figure 2.

Fig. 2. Examples of exercises created by AGILMAT

2.1 Refining the Exercises

The user can refine exercise generation by setting different values for particular
parameters of AGILMAT’s back-end. After the first step, the interface header
changes to present a comprehensive set of parameters that control variables in
AGILMAT’s back-end. The parameters, their range and default values depend
on the basic profile defined previously. Figure 2 shows the parameters that would
be made available under the conditions imposed by the selections made in the
previous panel. If the user changes, for instance, his requirements on the number
of occurrences of “Nth Root” (to be exactly 1) and “Quotient of Functions” (to
be 0) and asks AGILMAT to generate exercises, then all the expressions will
contain exactly one radical and no quotient, as we see in Figure 3.



384 A.P. Tomás, J.P. Leal, and M.A. Domingues

Fig. 3. Exercises generated by AGILMAT after a refinement of the number of occur-
rences of “Nth Root” and “Quotient of Functions”, now set to 1 and 0

The highlighted options in Figure 3 have the following roles:

Option 1 - Allows the user to change the number of occurrences of a particular
constructor (or sub-expression) that can arise in the exercises, as well as its
difficulty level. Three difficulty levels are supported currently – easy, medium
and hard – mapped internally to integer values or ranges, that are defined
in the selected profile.

Option 2 - To generate exercises again, the user presses the button “Generate
exercises”.

Option 3 - The user can return to the initial interface by pressing the button
“Go back to start”.

Option 4 - Generated exercises can be saved in different formats by pressing
“Save exercises”. Formats currently supported are HyperText Markup Lan-
guage (HTML), Portable Document Format (PDF) and PostScript (PS) and
XML - Question & Test Interoperability (XML - QTI), although for the re-
leased version, the available format is restricted to PDF.



A Web Application for Mathematics Education 385

The user may go on redefining or refining the parameters. Within AGILMAT
core system, the difficulty level is modeled as a sum of ranks given to the basic
functions involved in the expressions and to their composition. The user may
partially tune this level by changing the selections in the “Difficulty” menus (see
Figure 3, option 1).

In Figure 4, we see another excerpt of an exercise sheet. This random example

Fig. 4. Requiring one radical and one quotient

was created by setting the number of occurrences of “Quotient of Functions” to
1 and reducing its difficulty level and that of “Nth Root” to easy.

If the difficulty level of these constructs was the same as in Figure 3, the
constraints imposed by the parameters would be inconsistent. The requirement
of medium global cumulative difficulty could not be satisfied. AGILMAT would
give a warning, informing the user that it could not create exercises that satisfy
the given parameters.

Alternative interfaces, where the users could tune several finer parameters,
were tested with a focus group of six high-school teachers before we decided
for the current version. In particular, they did some experiments with another
interface where they could control finer subcategories of expressions, as in our
former testbed generator Demomath [16]. They found it too complex, not very
intuitive and somewhat bewildering. Hence, we decided to keep some parameters
fixed through default configuration profiles.

The default profile fixes the mapping of the difficulty ranks (easy, medium
and hard) to integer values, which may be distinct from basic function to ba-
sic function. By changing this encoding, we may tune AGILMAT to particular
needs, although the underlying model for estimating the difficulty level is rather
simplistic.

The predefined parameters include also the ranges of exponents (of radicals
and powers) and of coefficients that may occur in the expressions. In order to
keep the numbers that may arise in the computations small, the coefficients
of the created expressions are relatively small also (e.g., integers ranging over
[−5, 5]).



386 A.P. Tomás, J.P. Leal, and M.A. Domingues

As we see in the previous figures, the released prototype of AGILMAT, that is
available in the World Wide Web, yields a one-line solution for each exercise. This
may be very helpful to complement conventional class-based tuition, favoring
retention of fundamental concepts or results.

It is important that students acquire or improve abstraction skills. Very often
students do not really have to work out a solution with paper-and-pencil to grasp
why the solution computed by AGILMAT is correct, as for example, when the
problem is to “Find the set of solutions of |−x−3|

−x ≤ 0”, and AGILMAT output is
{−3}∪]0, ∞[. Students may be asked to justify why −3 is a solution and why x
shall be positive otherwise.

The critical analysis of the one-line solutions output by AGILMAT may have
a positive impact for the mastery of forms of reasoning. Although there is no
formal user study, we exploited this feature during informal demos of AGILMAT
to high school students and teachers. Their reactions were enough supportive and
encouraging, although students’ first reaction is usually to say that they are not
especially keen on Mathematics.

As we can see in Figure 5, AGILMAT may be used to create more complex
exercises. In this case, the solutions are not so immediate. To justify them,
students need to work out the solutions steps using paper-and-pencil.

Fig. 5. More complex exercises (grades 12)

3 Overview of AGILMAT’s Architecture

The AGILMAT system is available to its users through a web interface. The
AGILMAT system itself is a Constraint Logic Programing application, while its
web interface is based on a web wizards framework developed as a Java web
application. These two components are loosely coupled, thus providing a high
degree of independence between them. The web wizards framework connects
with the AGILMAT system through I/O streams, issuing Prolog queries and
receiving its output. The web wizard generator uses XML files to configure the
dependencies to the AGILMAT system. In particular, format conversions use



A Web Application for Mathematics Education 387

Fig. 6. AGILMAT system in the framework for developing web wizards

XSLT (W3C Recommendation, 1999). This setup is complemented by a cache
system that avoids regenerating exercises in certain cases. Figure 6 contextualizes
the AGILMAT system inside the framework for developing web wizards.

The web wizards generator, cache and AGILMAT system are represented as
strong squares and rectangles, internal modules of the AGILMAT system are
represented as dotted rectangles, points of transformation are represented as
strong T labeled circles. A switcher is represented by strong rhombus. Phys-
ical files with XML documents are represented as strong file icons and XML
documents in memory are represented as dotted file icons.

3.1 Web Wizards Generator

The state of the interaction with AGILMAT’s web interface is managed by a set
of parameters defined in the file param.xml, a valid document of a parameter
definition language defined for this purpose. The parameter definition language
includes such features as: composition of parameters, definition of default va-
lues as expression involving other parameters, dependencies between parameters,
among others.

At each user request, parameters are converted into Prolog queries that are
injected in the input stream to be interpreted and executed by Prolog engine.
The document wwg2ms.xsl is used to map parameters into Prolog clauses that
feed the AGILMAT’s system. Although this conversion could be handled entirely
on the framework’s side, using XSLT transformations, we opted to keep this
conversion fairly simple and develop a Prolog module on AGILMAT’s system to
process the parameters collected by the web interface.



388 A.P. Tomás, J.P. Leal, and M.A. Domingues

The document ms2wwg.xsl is used to produce an HTML interface to display
the current interaction state (namely the selected parameter values) and the
exercises generated by the AGILMAT’s system. For that purpose we had to
convert the exercises and their solutions to XML formatting languages, which
required the addition of a new Prolog module to serialize terms into an XML
format, to the AGILMAT’s system. In this case we could not have avoided doing
this conversion on the Prolog process side since XLST cannot handle Prolog
terms as input.

Using this XML representation, we can use an alternate ms2wwg.xsl to trans-
form the exercises to different formats, such as the format XML - Question & Test
Interoperability (XML - QTI) [9] with mathematical expressions represented in
MathML. By now we expected to have a better support for QTI in the major
e-learning platforms, such as Moodle [20], but unfortunately this proved not to
be the case. To cope with this fact we are presently developing transformation
for platform specific formats, such as Moodle XML [21].

In the released version, exercises and their solutions are converted to a LATEX
representation that may be converted to different formats, such as: HyperText
Markup Language (HTML), Portable Document Format (PDF) and PostScript
(PS). The PDF file is embedded in the web interface. The released prototype is
not yet using the document ms2wwg.xsl to convert exercises and their solutions
to a XML representation. We hope to use this document in the next version of
AGILMAT.

To improve the response time of the overall system with the web interface,
we developed a cache system. When the cache is activated, the web wizards
generator looks up for a system output previously generated with the same choice
of parameters. Our experience showed that certain sets of choices, specially those
selected in an early stage of the interaction, tend to be repeated since they are
just default values of the initial screens. In these situations the cache system
provides almost immediate feedback in these first attempts which encourages
novice users to continue exploring the system’s more complex features.

3.2 AGILMAT’s Core System

In the AGILMAT system there are two main modules written in Prolog acting
as filters: the expression generator processes the user constraints and produces
an expressions and types file, the exercise generator and solver processes this
file and produces exercises and theirs solutions. This last module is the con-
trol of the system and makes use of several libraries that handle arithmetic,
set operations and symbolic constraints (to solve inequations, disequations and
equations), along the lines of [16].

An interesting feature that distinguishes also AGILMAT from e-learning tools
that use pools of exercises [5] is the fact that its expression generator may po-
tentially yield arbitrarily complex expressions. In the current release, these ex-
pressions are characterized by the grammar proposed in [16]. This grammar was
written to describe a non-trivial set of expressions whose zeros and domains can
be exactly computed by the algebraic procedures that students should master



A Web Application for Mathematics Education 389

(up to the 12th grade). The constraints imposed by the selected profile and the
user options restrict these generic forms further. The expression generator is a
Prolog program that uses constraint programming to model such constraints as
constraints on finite domain (integer) variables. Each generated expression be-
longs to some pattern (i.e., type). For instance, all the expressions of the following
forms

a

| by + c | and n

√
a

( by + c )m

would be of types k / abs o p1 o x and rad(n) o (k / pow(m) o p1 o x),
respectively, where k, abs, p1, pow(m) and rad(n) represent a constant func-
tion, the absolute value function, a polynomial function of degree 1 and the
mth-power and nth-root functions, respectively. Further technical details may
be found in [16].

The configuration parameters constrain these types. The constants arising in
the expression – coefficients and exponents of radicals and powers – are also res-
tricted by the values given in each configuration profile (defined in param.xml).
The user cannot change their ranges directly in the interface, except by selecting
a distinct default profile. As we mentioned already, a preliminary version of the
interface, where users could tune several finer parameters, was tested with a focus
group of high-school teachers. They found it too complex. Hence, we decided to
keep parameters of this sort fixed through the default configuration profile.

The generator computes the type of the expressions and one (or more) expres-
sions of each type. In this way, it is possible to produce several expressions with
exactly the same type but distinct coefficients. This option is not yet available in
web interface, although it is an interesting feature for applications in assessment,
for instance.

All the modules supporting the solver are implemented in a Prolog-based con-
straint logic programming language. To guarantee the correctness of the com-
puted answers and a consistent (safe) interaction with users, AGILMAT must
have full control of the simplifications and rewritings performed. More often,
web-based learning environments make use of available Computer Algebra Sys-
tems to reduce the effort of writing a solver, e.g., ActiveMath [7] and Wims [18],
risking unexpected or wrong answers, as discussed in [1,4,11].

4 Some Ongoing Extensions and Discussion

We are addressing extensions of the core system to produce step-by-step so-
lutions that resemble those worked out by human beings. Some initial results
have been reported in [17]. This is a non-trivial design principle or goal com-
mon to some other mathematical tools for assisted learning, as MathXpert [1].
To understand and automate what people do when they do mathematics is a
continuous research topic in Artificial Intelligence, Automated Reasoning, and
Symbolic Computation [2,12].

When a student is using mathematical software for exploratory learning, it is
reasonable that the system may output don’t know or rather complicate formulas



390 A.P. Tomás, J.P. Leal, and M.A. Domingues

as an answer. This is not acceptable when the system is asking the student to
solve a problem that it has automatically generated. Both the computer and the
student (if he/she has learned the topic in assessment) must know how to solve
the exercise. For instance, the system shall not produce an ad-hoc polynomial
of degree greater than four and ask the student to find its roots. Indeed, it is
known that there exist no generic algorithm to solve that. In contrast, there
are algorithms to compute the rational roots of any polynomial with rational
coefficients, which, nevertheless students may not have learned. For this reason,
we try to understand how the algorithms learners should master condition the
drills that may be created and solved automatically.

We are also considering extensions of the forms of expressions covered. In
particular, we are investigating extensions of the types of numbers and sets
supported. Supporting symbolic computation with generic real numbers raises
theoretical difficulties. Many problems become undecidable. For instance, the
computable real numbers represent a null measure set (within the real numbers)
and there is no algorithm for deciding whether some real valued expression is
zero. This means that from the computational point of view, there are some
inherent difficulties that we have to circumvent. For educational purposes, we
do not need to support full generality.

References

1. Beeson, M.: Design Principles of Mathpert: Software to support education in al-
gebra and calculus. In: Kajler, N. (ed.) Computer-Human Interaction in Symbolic
Computation, Texts and Monographs in Symbolic Computation, vol. XI, pp. 89–
115. Springer, Heidelberg (1998)

2. Bundy, A.: The Computer Modelling of Mathematical Reasoning. Academic Press,
London (1983)

3. Domingues, M.A., Leal, J.P.: Configuring Web Wizards in XML. In: Proc. of
XATA2006, XML: Aplicações e Tecnologias Associadas, pp. 315–324 (2006)

4. Gottliebsen, H., Kelsey, T., Martin, U.: Hidden Verification for Computational
Mathematics. J. Symbolic Computation 39, 539–567 (2005)

5. Isidro, R.O., Sousa Pinto, J., Batel Anjo, A.: SA3C - Platform of Evaluation System
and Computer Assisted Learning. WEAS Transactions on Advances in Engineering
Education 1:2, 1–6 (2005), http://pmate.ua.pt:8081/pmate/

6. Leal, J.P., Domingues, M.A.: Rapid development of web interfaces to heterogeneous
systems. In: van Leeuwen, J., et al. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp.
716–725. Springer, Heidelberg (2007)

7. Melis, E., et al.: ActiveMath: A Generic and Adaptive Web-Based Learning Envi-
ronment. International Journal of Artificial Intelligence in Education 12:4, 385–407
(2001), http://www.activemath.org/

8. FP6-Project ”LeActiveMath”: Language Enhanced User Adaptive, Interactive
eLearning for Mathematics (2004/2006) http://www.dfki.de/leactivemath/

9. IMS QTI Specifications. IMS Global Learning Consortium, Inc.
www.imsglobal.org/question/index.html

10. Marriott, K., Stuckey, P.: Programming with Constraints – An Introduction. MIT
Press, Cambridge (1998)

http://pmate.ua.pt:8081/pmate/
http://www.activemath.org/
http://www.dfki.de/leactivemath/
www.imsglobal.org/question/index.html


A Web Application for Mathematics Education 391

11. Ravaglia, R., et al.: Successful Pedagogical Applications of Symbolic Computation.
In: Kajler, N. (ed.) Computer-Human Interaction in Symbolic Computation, pp.
61–88. Springer, Heidelberg (1999)

12. Robinson, A., Voronkoy, A. (eds.): Handbook of Automated Reasoning. Elsevier
Science, Amsterdam (2001)

13. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier Science, Amsterdam (2006)

14. SICStus Prolog User Manual (Release 3.12.0), SICS, Sweden (2004)
http://www.sics.se/isl/sicstuswww/site/index.html

15. Sierra, J., et al.: A highly modular and extensible architecture for an integrated
IMS-based authoring system: The <e-Aula> experience. Softw., Pract. Exper. 37:4,
441–461 (2007)

16. Tomás, A.P., Leal, J.P.: A CLP-Based Tool for Computer Aided Generation and
Solving of Maths Exercises. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS,
vol. 2562, pp. 223–240. Springer, Heidelberg (2002)

17. Tomás, A.P., Moreira, N., Pereira, N.: Designing a Solver for Arithmetic Con-
straints to Support Education in Mathematics. In: Proc. Artificial Intelligence
Applications and Innovations (AIAI 2006). IFIP Series, vol. 204, pp. 433–441.
Springer-Verlag, Heidelberg (2006)

18. Xiao, G.: On Public-Questions Tests, Univ. Nice Sophia-Antipolis, France (2004)
19. XSL Transformations (XSLT) W3C Recommendation (November 16, 1999),

http://www.w3.org/TR/xslt
20. Moodle course management system. http://moodle.org/
21. Moodle XML. http://docs.moodle.org/en/Moodle XML

http://www.sics.se/isl/sicstuswww/site/index.html
http://www.w3.org/TR/xslt
http://moodle.org/
http://docs.moodle.org/en/Moodle_XML

	Introduction
	Generating Exercises
	Refining the Exercises

	Overview of AGILMAT's Architecture
	Web Wizards Generator
	AGILMAT's Core System

	Some Ongoing Extensions and Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


