
Managing programming contests with Mooshak

José Paulo Leal, Fernando Silva

DCC-FC & LIACC, Universidade do Porto
Rua do Campo Alegre, 823, Porto, Portugal�

zp,fds � @ncc.up.pt

Abstract

This paper presents a new web-based system - Mooshak - aim-
ing to behave as a full contest manager as well as an automatic
judge for programming contests. Mooshak innovates in a num-
ber of aspects: it has a scalable architecture that can be used
from small single server contests to complex multi-site con-
tests with simultaneous public online contests and redundancy;
it has a roboust data management system favoring simple pro-
cedures for storing, replicating, backing up data and failure re-
covery using persistent objects; it has automatic judging capa-
bilities to assist human judges in the evaluation of programs;
it has builtin safety measures to prevent users from interfer-
ing with the normal progress of contests. Mooshak is an open
system implemented on the Linux operating system using the
Apache HTTP server and the Tcl scripting language.

This paper starts by describing the main features of the system
and its architecture with reference to the automated judging,
data management based on the replication of persistent objects
over a network. Finally, we describe our recent experience us-
ing this system for managing two official programming con-
tests.

Keywords: web application, contest management, program
evaluation, automatic judging

1 Introduction

For many years now, ACM has organized and conducted yearly
world programming championships best known as the ACM
International Collegiate Programming Contest (ICPC) for col-
lege students[7]. This contest is a two-tiered competition
among teams of students. Up to 60 of the winning teams of the
regional contests advance to the world finals. The participation
numbers are impressive: in 2001 there were more then 3000
teams, from 1150 universities, 70 countries, participating in 29
regional contests distributed among 94 locations. The main
motivation behind such an organization is to provide students
with an opportunity to demonstrate and sharpen their problem
solving and computing skills.

In a typical contest, teams composed by three students get a
set of nine problems which they have to solve in five hours on a
single computer, programming either in C, C++, Java or Pascal.
During the contest, teams can submit solutions, in source code,
to the given problems. The submissions are typically evaluated
by a judge person and it involves compiling the program, run-
ning it with a set of predefined test inputs, comparing the results
obtained with those expected in the test outputs, and then mark-

ing the submission accordingly to a marking scheme. A sub-
mission is marked as accepted only when it successfully passes
all the test cases. Usually, there are minimum execution times
associated with the tests, and therefore for a program to pass
successfully the tests must not only produce the correct results
but also has to do it within the specified time limit. This en-
sures that the solutions produced by teams are efficient enough
and not just a brute force approach.

Preparing and running programming contests with many teams
(60 teams at the finals) competing is an enormous task. Design-
ing an adequate environment for mediating the communication
between teams and judges is highly challenging; it must allow
the teams to ask questions, to submit their solutions, and to
receive information; and the judges to answer questions from
the teams, to judge their submissions and to report back re-
sults. Some systems have been developed trying to fulfill this
purpose. PC � is the system that has been used in recent world
finals [1]. It has capabilities for managing single and multi-site
contests and since it has been developed in Java it can be run
in either Windows or Unix operating systems. PC � , however,
lacks an important feature that is automated judging capabili-
ties, and therefore requires many judge persons to run a con-
test. Other systems have been developed elsewhere, namely at
the University of Valladolid were they have a 24 hour online
automated judge[2] that operates with users through email.

In this paper, we describe the design and implementation of a
new web-based system, Mooshak, aiming to behave as a full
contest manager and automatic judge for programming con-
tests, with capabilities to run single and multi-site contests, as
well as to behave as a 24 hour online judge. Mooshak is an
open system implemented on the Linux operating system using
the Apache HTTP server with Tcl scripts communicating via
the CGI protocol.

Mooshak innovates in a number of aspects: it has a scalable
architecture that can be used from small single server contests
to complex multi-site contests with simultaneous public online
contests and redundancy; it has a robust data management sys-
tem favoring simple procedures for storing, replicating, back-
ing up data and failure recovery using persistent objects; it has
automatic judging capabilities to assist human judges in the
evaluation of programs; and it has builtin safety measures to
prevent users from interfering with the normal progress of con-
tests.

Mooshak grew from previous experience within the group with
the Ganesh system [3], a web-based learning environment of
Computer Science topics (mainly programming languages) that
we have been using for several years now. Ganesh includes

a module to automatically evaluate students exercises with a
stronger requirement in that marks must be given to partial so-
lutions. For those unfamiliar with the Hindu mythology, lord
Ganesh is the elephant headed God with a broken tusk that is
always accompanied by a small mouse named Mooshak.

The reminder of the paper is organized as follows: first we
give an overview of Mooshak, mainly focusing on its external
view and functionalities; then we describe its architecture and
explain in more detail the decisions made in the implementa-
tion of the system; next, we describe our approach concerning
system security, safe execution of contestants programs, and
data backup to enable system recovery; then, we proceed by
describing our approach towards automatic judging; finally, we
describe our experience in using the system in two official con-
tests, draw some conclusions and advance ideas towards future
work.

2 System Overview

Mooshak is a client-server application to fully manage and run
programming contests. It is also web-based and therefore all
its functionalities are accessible through interfaces deployed
on a web-browser, irrespective of the operating system were
the browser is running. These interfaces use the HTML 4.0
frameset and no processing is made on the browser, except
for some data input validations that are implemented with EC-
MAScript1. Java and plugins were avoided on purpose to sim-
plify the use of the interface by any machine on the Internet.

Mooshak provides a number of user interfaces to accommodate
different views to users with different requirements and access
permissions to the data managed by the system. The system
includes four main views organized as follows:

Contestants view allows contestants to communicate with the
judges, asking questions, submitting programs, and re-
questing printouts

Judges view allows judge persons to give feedback to con-
testants, by answering questions, marking programs and
tracking the handling of printouts.

Administration view allows contest directors to setup a new
contest and to add all data necessary to make it opera-
tional.

Public view allows any user on the Internet to to follow online
the progress of the contest.

Access to these user-oriented views is controlled by authenti-
cation, except in the case of the public view that is open to ev-
eryone. Furthermore, the system has builtin safety measures to
prevent users from interfering with the normal progress of the
contests. Next we describe in more detail the features available
within each view.

1JavaScript 1.2

2.1 Contestants view

During a programming contest most of the team work is done
locally in their workstation using standard programming tools
such as text editors, compilers and debuggers. Communication
outside the team is mediated by Mooshak through the contes-
tants interface view. This view allows contestants to:

� submit source programs for evaluation as intended solu-
tions for problems;

� ask questions to the judges and access to all questions
posed by contestants and corresponding answers given by
the judges;

� access the list of all submissions and corresponding
marks;

� access to the current contest classification;

� print the source code programs in development;

� visualize on the browser the problem descriptions2.

Figure 1: Contestants view

Contestants interface, as shown in Figure 1, is divided in two
areas: the central area is used to display information and di-
alogs, and the area at the top (the header) is used to identify the
contest and the team (left part), to aggregate the selections (cen-
ter part) and to display the available command buttons (right
part).

The central area is used to list information related to the last
command processed. For instance, after submitting a program
the listing of submissions is updated, showing the available in-
formation for the latest submissions. The listings are paginated
and are automatically updated. The interface allows the con-
testants to control the update rate and page size of the listings.

2Specially important on public contests open to everyone on the Internet.

2.2 Jury view

Even though Mooshak evaluates submissions automatically, it
provides a number of functionalities to help judge persons in
doing a finer control of the judging process. From our experi-
ence so far, the automatic judging is very much trustful, nev-
ertheless problems may arise unexpectedly such as a system
resource failure or a mistake in a test case. Mooshak is highly
flexible in allowing the judges to re-evaluate submissions with-
out a team being penalized for it, and thus undoing whatever
could have gone wrong first. Through the jury’s interface,
judges can also answer questions posed by the teams, access
to all submissions made, view the current classification and to
control the handling of printouts produced by teams. The jury
interface is illustrated in figure 2. The jury navigates through

Figure 2: Judges view

the information using listings similar to those presented to the
contestants. The main difference to contestant listings are the
links in each row that open forms for managing submissions,
questions and printout requests. The judges view is divided
in two main areas: a control area on the left and a workspace
on the right. On the control area the judges select the type of
listing to be displayed on the workspace and may filter the list
by specifying a criteria on the problems and teams. By filter-
ing the listings, a judge person can monitor the activity of the
problems which he or she knows best.

The basic listings available to the jury show the submissions,
questions and printouts. This view includes a listing present-
ing the pending transactions of any of the three basic types, i.e.
non validated submissions, unanswered questions and undeliv-
ered printouts. The judge has also access to the classification,
statistics and contest progress listings.

2.3 Administration

The administration interface allows contest directors to setup
all necessary data to run the contest. By contest data we mean
the problem set (problem descriptions and test cases), teams
composition and authentication (passwords), and programming
languages with their corresponding execution commands and

compilation flags. Our first experiences in managing program-
ming contests were focused on the features for contestants and
judges. Contest administration was done by editing configu-
ration files and moving data files using shell commands. This
approach had two major problems: it was a fastidious and error
prone task and was difficult to use in an “emergency” situa-
tion during the contest. Even though there was a great effort to
make everything consistent and robust, it may be necessary to
edit contest data during the contest itself. This seldom occurs
but once is enough to convince anyone of the importance for
flexible administration features.

The main requirements identified for the administration inter-
face were the following:

History A contest is actually a series of events. Before the
main event usually there are one of more training sessions.
In the case of preliminaries the contest may be broken into
several events during a year. Thus, the administration in-
terface must allow the management of several successive
events, reuse data from one to another (e.g. teams) and
record all the transactions from previous events.

Navigation For each event Mooshak records the contest data
(problem set, teams, languages) and transactions (submis-
sions, questions and printouts). The contest data has its
own structure: the problem set includes several problems,
each one with several tests; the teams are composed by
several contestants and aggregated in institutions. The
navigation through the data must be simple and intuitive.

Editing Mooshak has basically two types of data: text strings
and text files. The first are used for configuring atomic
values like the starting and finishing date/time or the com-
mand line to compile a program for a given language. Ex-
amples of data files are program solutions, problem de-
scriptions or input test data. The interface must include
means of inserting and editing both types of data.

Commands The preparation of contest data requires the exe-
cution of several commands in different moments, for ex-
ample importing/exporting problem sets, generating pass-
words for teams, printing certificates of achievement,
checking problems timeouts, etc. These commands must
be simple to find and use with the appropriate data.

To meet these requirements the administration view of
Mooshak, as illustrated in Figure 3 provides a navigation tree
located on its left side and a workspace on the right. The
navigation tree follows a familiar interaction pattern that most
users will recognize immediately since it is used in several
file managers in various operating systems. To capitalize on
the metaphor the navigation tree actually has a folder for each
branch and a sheet for each leaf and each icon anchors a link
to that position. By navigating within the tree, the user can
quickly select any branch.

When a branch is selected the corresponding form is displayed
in the workspace on the right. The forms include a header

Figure 3: Administration view

showing the type of data and the path in the tree to get to
this form. The form also includes all the fields related with
the selected branch. As mentioned before, these can either be
text values, editable in the field, or text files. In the last case,
the user may either upload a file or edit the current one. In
the footer of the workspace several buttons indicate to the user
which commands may be executed with this branch. The Up-
date and Remove buttons are always available. The other but-
tons may vary according to the type of data being edited.

3 Architecture

The architecture of Mooshak is that of a typical web appli-
cation: a client-server framework connecting the users with
the machine where problem submissions are recorded, ana-
lyzed and validated. This model was adopted since it solves
efficiently the fundamental issues of a distributed system with
Mooshak requirements, namely:

GUI The HTML features are sufficient to layout the forms and
tables required for submitting data and displaying infor-
mation. Scripting on client side is enough for form vali-
dation purposes and Mooshak does not require any other
processing on the client side.

Communication HTTP supports file upload which is required
to submit programs during contests and to manage contest
data. Mooshak does not require complex interaction pat-
terns. Hence, the lack of state and session on HTTP are
drawbacks that can be easily overcome.

Security HTTP provides users authentication and access con-
trol. Using HTTP over a secure socket layer (HTTPS)
provides data encryption during communication.

Infrastructure Most of the infrastructure required for running
a Web application is already installed or is easily avail-
able. Moreover, it does not require changing existing se-
curity policies.

Figure 4 represents the architecture of Mooshak, structured in
vertical and horizontal layers. The users interface layer on the
top includes the machines used by the teams, human judges,
administrators and general audience to access the system. The
graphical users interface is rendered in HTML and interaction
data is communicated back to a server on the application layer
using the HTTP protocol. The application layer is composed of
set of servers, each using its own data management system.

Mooshak has also a vertical structure, where each layer groups
a set of client machines to their server. We call nodes to these
vertical layers since they are the basic component of a Mooshak
network. To be sure, a simple contest may be managed using
a single Mooshak node.

HTTP

HTML HTML HTML

Data

Server

Node

RSYNC

 Application

 Users inteface

Figure 4: Architecture of Mooshak

We will now concentrate on detailing the implementation of a
Mooshak server, emphasizing on its automated judging and its
data management approach using persistent objects. Then, we
describe how a network of Mooshak nodes is used to deal with
issues such as backup, load balancing and multi-site contests.

3.1 Mooshak server

The Mooshak server is an Apache HTTP server extended with
external programs using the CGI protocol, running on a Linux
operating system. Apache is responsible for the communica-
tion, authentication, access control and encryption. The ex-
ternal programs (CGIs) are responsible for generating HTML
interfaces and processing form data. They are implemented in
Tcl [4] and manage data using persistent objects over the
file system. Tcl was chosen for being a scripting language
with powerful tools for process management and for interfac-
ing the file system. These features were used to implement the
automated judging and data management with persistent ob-
jects as described in more detail next.

3.1.1 Automated judging

The automated judge is the corner stone of Mooshak. Its role is
to classify a submission according to a set of rules and produce
a report with the evaluation to be validated by a judge per-
son. A submission is composed by data relevant for the eval-
uation process, that is the program source code, the team-id,
the problem-id, and the programming language (this is auto-
matically inferred from the source code file extension). Sub-

missions are automatically judged and almost instantaneously
displayed to the teams, although initially in a pending state.
The judge persons have the responsibility of validating pend-
ing classifications, making them final, and occasionally modify
automatic classifications. A classification may have to be mod-
ified as a result of changes in the compilation and execution
conditions (e.g. changes in test cases). Reevaluation produces
another report that has to be compared with previous ones.

The automated judging can be divided in two parts according
to the type of analysis:

Static analysis checks integrity of data related to the submis-
sion and, if successful, produces an executable program.

Dynamic analysis is performed after a successful static anal-
ysis and is composed of one or more executions of the
program.

Static analysis starts by verifying if the submitted problem has
already been solved, in which case the submission is rejected
and no classification is given. Then it goes on to confirm the
verifications made by the interface, i.e. double checking the
submitted data for team ownership and problem-id. If these
verifications fail it probably means that the submissions did not
come from the contestants interface (where the values would
have been checked) and is thus marked as an “invalid submis-
sion”. At this stage the size of program source is also verified
to prevent a denial of service attack by submitting a “program
too long”. Finally, if it succeeds in this verification, it compiles
the submitted program using the compilation command line de-
fined in the administration interface. Mooshak may be more or
less tolerant according to the flags chosen for each compiler.
An error or compiler warning detected in this stage aborts the
automated judging and dynamic analysis is skipped. Table 1
lists the verifications performed during static analysis and the
associated classifications upon failure.

Verifications Classification
Team invalid submission

Language invalid submission
Problem invalid submission

Program size program too long
Compilation compile time error

Table 1: Static analysis verifications

Dynamic analysis involves the execution of the submitted pro-
gram with each test case assigned to the problem. A test is
defined by an input and an output file. The input file is passed
by the standard input to the program execution and its standard
output is compared with the output file. The errors detected
during dynamic analysis determine the classifications listed in
Table 2. Each classification has an associated severity rank
and the final classification is that with the highest severity rank
found in all test cases. The highest severity is given to the rare

situation where the system has an indication that the test failed
due to lack of operating system resources (inability to launch
more processes, for instance). The lowest severity is the case
where no other error was found, using the test cases, and there-
fore the submission is accepted as a solution to the problem.

Severity Classification
6 requires reevaluation
5 time-limit exceeded
4 output too long
3 run-time error
2 wrong answer
1 presentation error
0 accepted

Table 2: Classification and severity of program tests

The automatic judge marks an execution as “accepted” only
if the the standard output is exactly equal to the test output
file. Otherwise the output file and standard output are normal-
ized and compared again. In the normalization both outputs
being compared are stripped of all formatting characters. If
after this process the outputs become equal them the submis-
sion is marked as having a “presentation error”; otherwise it is
marked as a “wrong answer”.

In the current implementation the normalization trims white
characters (spaces, newlines and tabulation characters) and re-
places sequences of white characters by a single space. This
is a general normalization rule since white characters are only
used for formatting. In a specific problem other classes of char-
acters could have the same meaning. For instance, in a problem
where the only meaningful characters are digits, other charac-
ters, such as letters or punctuation, could be treated as format-
ting characters. This cannot be done in general since many
problems have a meaningful output that includes letters. This
feature will require having a meaningful class of characters de-
fined for each problem output.

The compilation and the execution of programs are the two
most insecure points of a contest management system. Pro-
vided it fits in a single file, a team can submit virtually any
program in one of the contest languages, including a bogus
or malicious program capable of jeopardizing the system and
ruin the contest. For that reason Mooshak compiles and exe-
cutes programs in a secure environment, with the privileges of
an insecure user and with several limits. Most of these limits
are independent of problems, with the exception of execution
timeout that is adjusted to each problem. The timeout for each
problem is determined before the contest and it is the maxi-
mum time taken by the judges solutions, with all test cases,
rounded up for the next integer (in seconds). The timeout for
compilation is 60 seconds. The other resource limits enforced
are listed in Table 3 with their default values in bytes (except
for the number of child-processes) .

Maximum Limits Value

Process data segment 2097152
Process stack segment 1048576
Process RSS 4194304
Output 102400
Source code 102400
Child processes 0

Table 3: Compilation and execution limits

3.1.2 Persistent objects

The Mooshak data uses an object oriented approach - that we
call persistent objects - to blend data, recorded on the file sys-
tem, with Tcl code. This approach structures the system and
is the basis for the replication mechanism. It should be noted
that persistent objects are in no way related with incr Tcl,
a full fledged object oriented language based on Tcl. The data
management of Mooshak owes more to the Tk graphical ob-
ject library: both have pathnames as object references and a
flat (without inheritance) set of classes. Mooshak does not use
a separate data management system, typical of the three-tier
model so popular among Web applications. The next para-
graphs try to justify this choice and describe the persistent ob-
jects mechanism.

Most Web applications rely on relational database manage-
ments system (RDBMS) to store data. These systems provide
independence between application and data as well as efficient
tools for managing and querying data. On the other hand a
RDBMS introduces extra complexity: the RDBMS itself re-
quires a separate installation and management; the mismatch
between application data structures and database structure re-
quires extra processing for converting data between the two for-
mats. Arguably, for some applications the RDBMS may not be
the best approach and this may be the case with programming
contest management data given its characteristics:

Small The amount of data is comparatively small and does not
require sophisticated indexing. The larger data structures
are those that record transactions (e.g. problem submis-
sions) and they do seldom require more than 1000 records
per contest.

Variable Records include data of variable sizes such as pro-
gram code and object files, problem descriptions (HTML
files with images).

Structured Data is logically organized in an hierarchical
structure which simplifies the implementation of naviga-
tion and editing commands.

Accessible Programs and test data must be easily accessible
from the command line interpreter to implement features
such as automated judging.

Distributed Data must be efficiently copied between different
machines to enable replication.

Having in mind that a good part of the data used by Mooshak
is conveniently represented in plain files - source and object
programs, data files, HTML files and images - it seams reason-
able to base the data management directly over the operating
system, using files to record data and directories to maintain
structure. Thus, we define a persistent object as a special kind
of object that is made persistent by recording its definition di-
rectly on the file system, and is therefore referenced by a path-
name.

A persistent object belongs to a class that determines both the
attributes and the operations it supports. A class is imple-
mented as a Tcl module with two new declarations: At-
tributes and Operations. The first type of declara-
tion states the names and types of attributes of the class. The
supported types include text values, enumerations, files, sub-
objects and references to other persistent objects. Hence, a per-
sistent object is implemented as a directory containing its files
and sub-objects as sub-directories. The other values as well
as the object’s class are recorded in special hidden files in that
directory. An operation is a kind of method. In the definition
of an operation the attribute names refer to the values of the
current object. A class operation is invoked when a message is
passed to the object. The object reference defines a context for
the operation and the values for the attributes.

Attributes Counter {

Value text {}
}

Operation Counter::reset {

set Value 0
}

Operation Counter::increment {

incr Value
}

Operation Counter::show {

return $Value

}

Figure 5: Definition of class Counter

Figure 5 presents the class Counter with a single attribute
Value. Please note that the value is declared as text since
persistent objects do not provide numeric types. The reason
behind the lack of numeric types is the fact that these types
do not exist neither in Tcl nor in HTTP. Hence, for Web ap-
plications written in Tcl, numeric attributes are redundant.
The operations reset, increment and show allow us to
operate on this attribute. Figure 6 illustrates an use of class

Counter: first an instance of this class is created from file
/home/mooshak/mycounter, then this pathname is used
for sending and increment message to the instance that is fi-
nally saved on disk. Opening and saving are performed using
commands provided by the Mooshak data package.

data::open Counter /home/mooshak/mycounter

/home/mooshak/mycounter increment

data::save /home/mooshak/mycounter

Figure 6: Using class Counter

3.2 Mooshak network

A single Mooshak node - a server accessible through a set of
Web clients on users machines - is sufficient for running a small
programming contest (i.e. a contest with up to 20 teams) where
reliability is not at premium. Running an official contest, with a
concern for reliability and larger number of teams, distributed
in several sites and a simultaneous online contest requires a
more complex setup, with a network of interconnected nodes.

A link between the Mooshak nodes X and Y consists on
the replication of the contest data from the server X to the
server Y. The main reasons for replicating contest data between
Mooshak servers are to support:

System Backup Replication is used to maintain a backup sys-
tem, with an updated version of the contest data, so that it
can replace one of the servers in case of hardware failure.

Online Contest Replication propagates the contest data to a
server with Internet access used to maintain an online con-
test simultaneously with an official local contest.

Load balancing Several servers distribute load among them
and replicate their data to the others. In this case each
server is assigned to a set of users, for instance, contes-
tants to a server and judges to another, or contestants in
different rooms to different servers.

Multi-site contest This case is similar to the previous but
servers are in distant locations.

The Mooshak network configuration for a particular contest
may contain several of these links. Figure 7 represents the net-
work for a contest taking place simultaneously in two sites, A
and B, the first using two servers (Server A1 and Server A2)
for load balancing and the last using just one server (Server
B). Each site has a backup with an updated version of the con-
test data, capable of replacing any of the main servers in case
of failure. Site A maintains also an online version of the con-
test where anyone on the Internet can compete against the of-
ficial contestants physically located at either site A or at site
B. Some nodes are connected by unidirectional links, such

as those connecting servers with the backup nodes or online-
contest servers, and other are bidirectional, such as those con-
necting contest servers among them.

Server A1 Server A2

Backup A

Public

Backup B

Server B

SITE A

SITE B

Figure 7: Network of Mooshak nodes

The Mooshak replication uses the rsync remote-update pro-
tocol. This protocol updates differences between two sets of
files over a network link, using an efficient checksum-search
algorithm. The replication procedure is invoked frequently to
propagate changes to other servers, typically every 60 seconds,
and copies only the data that has been changed since the last
replication. The object files produced by the compilation of
programs are not replicated, just the evaluation reports. If nec-
essary the programs may be reevaluated in a different machine.

The main issue with replication is the consistency of contest
data, namely that no data fails to be replicated or is overwritten
by replicated data. To guarantee that no data fails to be repli-
cated we must ensure that there is a replication path connect-
ing all servers interfacing with official contestants - the main
servers.

To address the problem of data being overwritten, we must dif-
ferentiate between contest definition data (such teams, prob-
lems, programming languages) and contest transactions (such
as submissions, questions and printouts). Of these two, con-
test transactions, specially submissions, are particularly impor-
tant. To guarantee uniqueness all transaction data is keyed by a
timestamp, the team ID and the problem ID. Thus, if team ID
is unique in the system, and transactions from the same team
are consistently sent to the same server, then there is no dan-
ger of losing transactions due to overwritten data since each
transaction key is also unique.

Once a contest is started, the contest data is not, in principle,
modified. It should be updated in a single node for consistency
sake, and that node must have a path to every other node in
the network. The only exception to this case is the creation
of teams for online-contest servers, as we allow contestants to
register during the contest. If load balancing is used for online-
contest servers then it is important to assign team creation to a
single server. Otherwise, two teams with the same name, and
same group, registering at same time in different servers could
(although not very likely) share the same record.

For the above setup to work properly, all servers clocks must
be synchronized. This can be achieved using the Network Time
Protocol [8].

4 Experience

Mooshak has been used to manage several programming con-
tests, culminating in SWERC 2001 - the Southwestern Re-
gional ACM Programming Contest [5]. The system was
also used in the preliminary Portuguese Programming Contest,
MIUP 2001 [6], and several local competitions within the Uni-
versity of Porto. The two major events - SWERC 2001 and
MIUP 2001 - had simultaneous online contests and were pre-
ceded by several practice sessions. The public contests were
open to anyone on the Internet and the submissions from the
official contests were propagated to the online-contest server.
The practice sessions gave the contestants an opportunity to be-
come acquainted with the system as well as train their problem
solving skills.

SWERC 2001 MIUP 2001

Number of Teams 47 22
Total of submissions 459 95

Total of queries 57 44
Total of printouts 329 38

Server CPU AMD 1.6 GHz 2*PIII 600 MHz
Server RAM 756 Mb 512 Mb

Maximum CPU load 85 10

Table 4: Contest figures

Table 4 lists some figures related to activity of the Linux servers
used during the two official contests managed by Mooshak. It
shows that SWERC 2001 was a more demanding event in what
regards system resources and made us rethink our load balanc-
ing strategy for similar future events, using the approach ex-
plained in the previous section. The experience gained during
these events helped us to validate the main designs goals of
Mooshak and to identify some points that were object of im-
provement:

Flexibility During the contests changes had to be made to the
contest definition data, such as input/output tests, which
required reevaluating submissions. This situation arose
specially in the practice contests, where the preparation
time is small and standards of problem verification are not
as high as in the official contests. Using Mooshak the hu-
man judges were able to quickly correct all situations of
this nature during the contest itself.

Robustness The large number of submissions during the sev-
eral contests confirmed the robustness of the automated
judging system. During the training sessions some of the
teams explored the limits of the system and submitted pro-
grams that they thought could damage it; we were pleased
to find that they did not succeed. We noticed that the sys-
tem was under a lot of stress in the final minutes of the
contests when the teams a) submit all the programs they
are still working on, hoping to have another correct solu-
tion b) produce more requests for classification listings.
For this reason, in the case of SWERC 2001, we con-
cluded that the the number of teams managed by a single

server should be less than we originally assumed. Split-
ting the teams by servers can be done using the load bal-
ancing capabilities of the Mooshak network. It should be
noted that, although overloaded, the Mooshak managed
every contest from beginning to end.

Accuracy The automated judging system provided classifica-
tion reports that were simply validated by a small team of
judge persons. In some cases the load of the machines
made it impossible to execute the programs within the
timeout limits defined for some problems. Mooshak en-
forces two time limits: execution and real time. The exe-
cution time limit is not affected by machine load but real
time limit is. Real time limits are necessary to ensure that
programs trying to read more than the available data do
not run forever. In the situations where the server load
was too high and the submissions reported “time limit ex-
ceeded” the judge persons reevaluated these submissions
on the backup system.

5 Conclusion

In this paper we have detailed the design and implementation of
Mooshak, a system aiming to become a full programming con-
test manager. The system has been heavily tested with practice
and official contests, and has shown so far to be very flexible
in managing contests with different requirements, quite robust
as it supported successfully high transactions load and its auto-
mated judging capabilities showed to be very accurate. Further-
more, the system does not require a large number of judge per-
sons to assist in the management during the contest. Mooshak
distinguishes itself from other systems by allowing all interac-
tion with the system to be web-based and by having a simple
and scalable architecture that enables support for multiple-site
contests and simultaneous online contests.

For the near future we envisage further system development,
specially concerning the following issues:

Evaluation and Classification Mooshak evaluates each sub-
mission and computes the final classification using ICPC
rules. These rules are unappropriated for other types of
programming contests that have shown interest in using
Mooshak. For instance, submissions could be evaluated
quantitatively instead of just being marked as accept or,
say wrong answer. Similarly, the final classification of
teams could be computed differently to also accommo-
date the partial marks for problems. To deal with these
different types of contests the next version of Mooshak
will have evaluation and classification policies as part of
the contest definition.

Data sharing Mooshak already has some import/export fea-
tures, namely for teams (using ICPC data) and for problem
sets. For problem sets, Mooshak uses an archive (zip or
gziped tar) with all files related to each problem (problem
description, solutions, test data) and an XML file stating

the archives content. We expect to improve this specifica-
tion and extend this feature to other contest data.

Acknowledgements

This work was partially supported by the “Programa de Finan-
ciamento Plurianual, Fundação para a Ciência e Tecnologia”
and “Programa PRAXIS XXI”.

References

[1] Programming Contest Control System (�����), California
State University, Sacramento, USA
http://www.ecs.csus.edu/pc2/

[2] Online Judge from the Universidad de Valladolid, Spain
http://acm.uva.es/problemset

[3] Ganesh Learning Environment
http://www.ncc.up.pt/˜zp/ganesh

[4] Tcl Developer Xchange
http://tcl.activestate.com

[5] 2001 Southwestern Regional ACM Programming Contest,
Universidade do Porto, Portugal
http://swerc.up.pt

[6] Maratona Inter-Universitária de programação
http://acm.up.pt/miup

[7] The ACM-ICPC International Collegiate Programming
Contest
http://icpc.baylor.edu/iccp

[8] Network Time Synchronization Project
http://www.eecis.udel.edu/ mills/ntp.htm

