Fraud Detection - 2021/2022
  • Home
  • Information
    • Evaluation
    • Key Dates
    • Useful Info
  • Classes
  • Practical Assignments
  • Bibliography
  • Contact

Bibliography

  • Books
    • Recommended for the subject
      • Charu C. Aggarwal (2015): Data Mining, the textbook. Springer.
      • Torgo, L. (2017): Data Mining with R, learning with case studies (2nd edition). CRC Press. Associated web page
      • Han, J., Kamber, M. and Pei, J. (2011): Data Mining - Concepts and Techniques (3rd edition). ISBN: 9780123814791
    • Other extra books
      • Peter Flach (2012): Machine Learning, Cambridge University Press. ISBN: 978-1-107-42222-3
      • Kuhn, M. and Johnson, K. (2013): Applied Predictive Modeling. Springer.
      • Chambers, J. (2008): Software for Data Analysis, programming in R. Springer.
      • Adler, J. (2010): R in a nutshell. O’Reilly.
    • Free/web-based books
      • Wickham, H. (2014): Advanced R. The R Series. CRC Press. Free web access
      • Grolemund, G. ; Wickham, H. (2016): R for Data Science. O’Reilly. Free web access
      • Peng, R. (2016): R Programming for Data Science.
      • Several free R books